Suppr超能文献

甾醇结构决定脂质囊泡中的混溶性与熔化转变。

Sterol structure determines miscibility versus melting transitions in lipid vesicles.

作者信息

Beattie Mary Elizabeth, Veatch Sarah L, Stottrup Benjamin L, Keller Sarah L

机构信息

Departments of Chemistry and Physics, University of Washington, Seattle, Washington 98195-1700, USA.

出版信息

Biophys J. 2005 Sep;89(3):1760-8. doi: 10.1529/biophysj.104.049635. Epub 2005 Jun 10.

Abstract

Lipid bilayer membranes composed of DOPC, DPPC, and a series of sterols demix into coexisting liquid phases below a miscibility transition temperature. We use fluorescence microscopy to directly observe phase transitions in vesicles of 1:1:1 DOPC/DPPC/sterol within giant unilamellar vesicles. We show that vesicles containing the "promoter" sterols cholesterol, ergosterol, 25-hydroxycholesterol, epicholesterol, or dihydrocholesterol demix into coexisting liquid phases as temperature is lowered through the miscibility transition. In contrast, vesicles containing the "inhibitor" sterols androstenolone, coprostanol, cholestenone, or cholestane form coexisting gel (solid) and liquid phases. Vesicles containing lanosterol, a sterol found in the cholesterol and ergosterol synthesis pathways, do not exhibit coexisting phases over a wide range of temperatures and compositions. Although more detailed phase diagrams and precise distinctions between gel and liquid phases are required to fully define the phase behavior of these sterols in vesicles, we find that our classifications of promoter and inhibitor sterols are consistent with previous designations based on fluorescence quenching and detergent resistance. We find no trend in the liquid-liquid or gel-liquid transition temperatures of membranes with promoter or inhibitor sterols and measure the surface fraction of coexisting phases. We find that the vesicle phase behavior is related to the structure of the sterols. Promoter sterols have flat, fused rings, a hydroxyl headgroup, an alkyl tail, and a small molecular area, which are all attributes of "membrane active" sterols.

摘要

由二油酰磷脂酰胆碱(DOPC)、二棕榈酰磷脂酰胆碱(DPPC)和一系列甾醇组成的脂质双分子层膜在互溶转变温度以下会分离成共存的液相。我们使用荧光显微镜直接观察巨型单层囊泡内1:1:1 DOPC/DPPC/甾醇囊泡中的相变。我们发现,含有“促进剂”甾醇胆固醇、麦角固醇、25-羟基胆固醇、表胆固醇或二氢胆固醇的囊泡,随着温度通过互溶转变而降低时,会分离成共存的液相。相比之下,含有“抑制剂”甾醇雄烯酮、粪甾醇、胆甾烯酮或胆甾烷的囊泡形成共存的凝胶(固体)相和液相。含有羊毛甾醇(一种在胆固醇和麦角固醇合成途径中发现的甾醇)的囊泡在很宽的温度和组成范围内不会出现共存相。尽管需要更详细的相图以及凝胶相和液相之间的精确区分来全面定义这些甾醇在囊泡中的相行为,但我们发现我们对促进剂和抑制剂甾醇的分类与先前基于荧光猝灭和去污剂抗性的指定是一致的。我们没有发现含有促进剂或抑制剂甾醇的膜的液-液或凝胶-液转变温度有任何趋势,并测量了共存相的表面分数。我们发现囊泡的相行为与甾醇的结构有关。促进剂甾醇具有扁平的稠合环、一个羟基头基、一个烷基尾和一个小的分子面积,这些都是“膜活性好”的甾醇的特征。

相似文献

1
Sterol structure determines miscibility versus melting transitions in lipid vesicles.
Biophys J. 2005 Sep;89(3):1760-8. doi: 10.1529/biophysj.104.049635. Epub 2005 Jun 10.
4
Phase behavior of lipid monolayers containing DPPC and cholesterol analogs.
Biophys J. 2006 May 1;90(9):3176-83. doi: 10.1529/biophysj.105.072959. Epub 2006 Feb 3.
5
Miscibility phase diagrams of giant vesicles containing sphingomyelin.
Phys Rev Lett. 2005 Apr 15;94(14):148101. doi: 10.1103/PhysRevLett.94.148101. Epub 2005 Apr 13.
6
Elasticity and phase behavior of DPPC membrane modulated by cholesterol, ergosterol, and ethanol.
Biophys J. 2005 Oct;89(4):2481-93. doi: 10.1529/biophysj.104.057943. Epub 2005 Jul 29.
8
Liquid-liquid phase transition temperatures increase when lipid bilayers are supported on glass.
Biochim Biophys Acta Biomembr. 2018 Oct;1860(10):1965-1971. doi: 10.1016/j.bbamem.2018.05.001. Epub 2018 May 10.
9
Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol.
Biophys J. 2003 Nov;85(5):3074-83. doi: 10.1016/S0006-3495(03)74726-2.
10
Organization in lipid membranes containing cholesterol.
Phys Rev Lett. 2002 Dec 23;89(26):268101. doi: 10.1103/PhysRevLett.89.268101. Epub 2002 Dec 9.

引用本文的文献

1
Yeast Membrane Hydration is Maintained Under Ethanol Exposure.
J Membr Biol. 2025 Sep 15. doi: 10.1007/s00232-025-00359-y.
2
Structural dissection of ergosterol metabolism reveals a pathway optimized for membrane phase separation.
Sci Adv. 2025 Apr 25;11(17):eadu7190. doi: 10.1126/sciadv.adu7190. Epub 2025 Apr 23.
4
Hypo-Osmotic Stress and Pore-Forming Toxins Adjust the Lipid Order in Sheep Red Blood Cell Membranes.
Membranes (Basel). 2023 Jun 25;13(7):620. doi: 10.3390/membranes13070620.
6
Remodeling of yeast vacuole membrane lipidomes from the log (one phase) to stationary stage (two phases).
Biophys J. 2023 Mar 21;122(6):1043-1057. doi: 10.1016/j.bpj.2023.01.009. Epub 2023 Jan 12.
7
Charged Lipids Influence Phase Separation in Cell-Sized Liposomes Containing Cholesterol or Ergosterol.
Membranes (Basel). 2022 Nov 9;12(11):1121. doi: 10.3390/membranes12111121.
8
Membrane elasticity modulated by cholesterol in model of porcine eye lens-lipid membrane.
Exp Eye Res. 2022 Jul;220:109131. doi: 10.1016/j.exer.2022.109131. Epub 2022 May 27.

本文引用的文献

1
Seeing spots: complex phase behavior in simple membranes.
Biochim Biophys Acta. 2005 Dec 30;1746(3):172-85. doi: 10.1016/j.bbamcr.2005.06.010. Epub 2005 Jul 6.
2
Miscibility phase diagrams of giant vesicles containing sphingomyelin.
Phys Rev Lett. 2005 Apr 15;94(14):148101. doi: 10.1103/PhysRevLett.94.148101. Epub 2005 Apr 13.
3
Liquid domains in vesicles investigated by NMR and fluorescence microscopy.
Biophys J. 2004 May;86(5):2910-22. doi: 10.1016/S0006-3495(04)74342-8.
4
Lipid lateral diffusion in ordered and disordered phases in raft mixtures.
Biophys J. 2004 Feb;86(2):891-6. doi: 10.1016/S0006-3495(04)74164-8.
5
Cholesterol oxidase senses subtle changes in lipid bilayer structure.
Biochemistry. 2004 Jan 27;43(3):827-36. doi: 10.1021/bi035697q.
6
Unraveling the mystery surrounding cholesterol's condensing effect.
J Am Chem Soc. 2003 Dec 31;125(52):16182-3. doi: 10.1021/ja039172x.
8
Steroid structural requirements for stabilizing or disrupting lipid domains.
Biochemistry. 2003 Dec 9;42(48):14267-76. doi: 10.1021/bi035759c.
9
Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol.
Biophys J. 2003 Nov;85(5):3074-83. doi: 10.1016/S0006-3495(03)74726-2.
10
A closer look at the canonical 'Raft Mixture' in model membrane studies.
Biophys J. 2003 Jan;84(1):725-6. doi: 10.1016/S0006-3495(03)74891-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验