Flint James, Taylor Edward, Yang Min, Bolam David N, Tailford Louise E, Martinez-Fleites Carlos, Dodson Eleanor J, Davis Benjamin G, Gilbert Harry J, Davies Gideon J
Institute for Cell and Molecular Biosciences, University of Newcastle upon Tyne, The Medical School, Newcastle upon Tyne NE2 4HH, UK.
Nat Struct Mol Biol. 2005 Jul;12(7):608-14. doi: 10.1038/nsmb950. Epub 2005 Jun 12.
The enzymatic transfer of activated mannose yields mannosides in glycoconjugates and oligo- and polysaccharides. Yet, despite its biological necessity, the mechanism by which glycosyltransferases recognize mannose and catalyze its transfer to acceptor molecules is poorly understood. Here, we report broad high-throughput screening and kinetic analyses of both natural and synthetic substrates of Rhodothermus marinus mannosylglycerate synthase (MGS), which catalyzes the formation of the stress protectant 2-O-alpha-D-mannosyl glycerate. The sequence of MGS indicates that it is at the cusp of inverting and retaining transferases. The structures of apo MGS and complexes with donor and acceptor molecules, including GDP-mannose, combined with mutagenesis of the binding and catalytic sites, unveil the mannosyl transfer center. Nucleotide specificity is as important in GDP-D-mannose recognition as the nature of the donor sugar.
活化甘露糖的酶促转移可在糖缀合物以及寡糖和多糖中产生甘露糖苷。然而,尽管其具有生物学必要性,但糖基转移酶识别甘露糖并催化其转移至受体分子的机制仍知之甚少。在此,我们报告了对海栖热袍菌甘露糖基甘油酸合酶(MGS)的天然和合成底物进行的广泛高通量筛选及动力学分析,该酶催化应激保护剂2-O-α-D-甘露糖基甘油酸的形成。MGS的序列表明它处于转化型和保留型转移酶的交界处。无配体MGS以及与供体和受体分子(包括GDP-甘露糖)形成的复合物的结构,结合对结合位点和催化位点的诱变,揭示了甘露糖基转移中心。核苷酸特异性在GDP-D-甘露糖识别中与供体糖的性质同样重要。