Suppr超能文献

使用原子力场和溶剂效应的连续介质表示法对蛋白质进行长时间动力学模拟:结构和动力学性质的计算。

Long dynamics simulations of proteins using atomistic force fields and a continuum representation of solvent effects: calculation of structural and dynamic properties.

作者信息

Li Xianfeng, Hassan Sergio A, Mehler Ernest L

机构信息

Department of Physiology and Biophysics, Weill Medical College, Cornell University, New York, New York, USA.

出版信息

Proteins. 2005 Aug 15;60(3):464-84. doi: 10.1002/prot.20470.

Abstract

Long dynamics simulations were carried out on the B1 immunoglobulin-binding domain of streptococcal protein G (ProtG) and bovine pancreatic trypsin inhibitor (BPTI) using atomistic descriptions of the proteins and a continuum representation of solvent effects. To mimic frictional and random collision effects, Langevin dynamics (LD) were used. The main goal of the calculations was to explore the stability of tens-of-nanosecond trajectories as generated by this molecular mechanics approximation and to analyze in detail structural and dynamical properties. Conformational fluctuations, order parameters, cross correlation matrices, residue solvent accessibilities, pKa values of titratable groups, and hydrogen-bonding (HB) patterns were calculated from all of the trajectories and compared with available experimental data. The simulations comprised over 40 ns per trajectory for ProtG and over 30 ns per trajectory for BPTI. For comparison, explicit water molecular dynamics simulations (EW/MD) of 3 ns and 4 ns, respectively, were also carried out. Two continuum simulations were performed on each protein using the CHARMM program, one with the all-atom PAR22 representation of the protein force field (here referred to as PAR22/LD simulations) and the other with the modifications introduced by the recently developed CMAP potential (CMAP/LD simulations). The explicit solvent simulations were performed with PAR22 only. Solvent effects are described by a continuum model based on screened Coulomb potentials (SCP) reported earlier, i.e., the SCP-based implicit solvent model (SCP-ISM). For ProtG, both the PAR22/LD and the CMAP/LD 40-ns trajectories were stable, yielding C(alpha) root mean square deviations (RMSD) of about 1.0 and 0.8 A respectively along the entire simulation time, compared to 0.8 A for the EW/MD simulation. For BPTI, only the CMAP/LD trajectory was stable for the entire 30-ns simulation, with a C(alpha) RMSD of approximately 1.4 A, while the PAR22/LD trajectory became unstable early in the simulation, reaching a C(alpha) RMSD of about 2.7 A and remaining at this value until the end of the simulation; the C(alpha) RMSD of the EW/MD simulation was about 1.5 A. The source of the instabilities of the BPTI trajectories in the PAR22/LD simulations was explored by an analysis of the backbone torsion angles. To further validate the findings from this analysis of BPTI, a 35-ns SCP-ISM simulation of Ubiquitin (Ubq) was carried out. For this protein, the CMAP/LD simulation was stable for the entire simulation time (C(alpha) RMSD of approximately 1.0 A), while the PAR22/LD trajectory showed a trend similar to that in BPTI, reaching a C(alpha) RMSD of approximately 1.5 A at 7 ns. All the calculated properties were found to be in agreement with the corresponding experimental values, although local deviations were also observed. HB patterns were also well reproduced by all the continuum solvent simulations with the exception of solvent-exposed side chain-side chain (sc-sc) HB in ProtG, where several of the HB interactions observed in the crystal structure and in the EW/MD simulation were lost. The overall analysis reported in this work suggests that the combination of an atomistic representation of a protein with a CMAP/CHARMM force field and a continuum representation of solvent effects such as the SCP-ISM provides a good description of structural and dynamic properties obtained from long computer simulations. Although the SCP-ISM simulations (CMAP/LD) reported here were shown to be stable and the properties well reproduced, further refinement is needed to attain a level of accuracy suitable for more challenging biological applications, particularly the study of protein-protein interactions.

摘要

使用蛋白质的原子描述和溶剂效应的连续介质表示,对链球菌蛋白G(ProtG)的B1免疫球蛋白结合结构域和牛胰蛋白酶抑制剂(BPTI)进行了长时间动力学模拟。为了模拟摩擦和随机碰撞效应,使用了朗之万动力学(LD)。计算的主要目标是探索这种分子力学近似产生的数十纳秒轨迹的稳定性,并详细分析结构和动力学性质。从所有轨迹计算构象波动、序参量、交叉相关矩阵、残基溶剂可及性、可滴定基团的pKa值和氢键(HB)模式,并与可用的实验数据进行比较。ProtG的每条轨迹模拟时长超过40 ns,BPTI的每条轨迹模拟时长超过30 ns。作为对比,还分别进行了时长为3 ns和4 ns的显式水分子动力学模拟(EW/MD)。使用CHARMM程序对每种蛋白质进行了两次连续介质模拟,一次使用蛋白质力场的全原子PAR22表示(此处称为PAR22/LD模拟),另一次使用最近开发的CMAP势引入的修正(CMAP/LD模拟)。显式溶剂模拟仅使用PAR22进行。溶剂效应通过基于先前报道的屏蔽库仑势(SCP)的连续介质模型来描述,即基于SCP的隐式溶剂模型(SCP-ISM)。对于ProtG,PAR22/LD和CMAP/LD的40 ns轨迹都是稳定的,在整个模拟时间内,Cα均方根偏差(RMSD)分别约为1.0 Å和0.8 Å,而EW/MD模拟的该值为0.8 Å。对于BPTI,在整个30 ns模拟中只有CMAP/LD轨迹是稳定的,Cα RMSD约为1.4 Å,而PAR22/LD轨迹在模拟早期就变得不稳定,Cα RMSD达到约2.7 Å并一直保持到模拟结束;EW/MD模拟的Cα RMSD约为1.5 Å。通过对主链扭转角的分析,探究了PAR22/LD模拟中BPTI轨迹不稳定的原因。为了进一步验证对BPTI分析的结果,对泛素(Ubq)进行了35 ns的SCP-ISM模拟。对于这种蛋白质,CMAP/LD模拟在整个模拟时间内都是稳定的(Cα RMSD约为1.0 Å),而PAR22/LD轨迹显示出与BPTI中类似的趋势,在7 ns时Cα RMSD达到约1.5 Å。尽管也观察到了局部偏差,但发现所有计算的性质都与相应的实验值一致。除了ProtG中溶剂暴露的侧链-侧链(sc-sc)HB外,所有连续介质溶剂模拟都能很好地重现HB模式,在ProtG的晶体结构和EW/MD模拟中观察到的一些HB相互作用在连续介质溶剂模拟中丢失了。这项工作中报告的总体分析表明,蛋白质的原子表示与CMAP/CHARMM力场以及溶剂效应的连续介质表示(如SCP-ISM)相结合,能够很好地描述从长时间计算机模拟中获得的结构和动力学性质。尽管此处报告的SCP-ISM模拟(CMAP/LD)被证明是稳定的且性质得到了很好的重现,但仍需要进一步改进以达到适用于更具挑战性的生物学应用(特别是蛋白质-蛋白质相互作用研究)的精度水平。

相似文献

3
Benchmarking implicit solvent folding simulations of the amyloid beta(10-35) fragment.
J Phys Chem B. 2008 May 15;112(19):6175-86. doi: 10.1021/jp077099h. Epub 2008 Mar 19.
4
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
7
Incorporating receptor flexibility in the molecular design of protein interfaces.
Protein Eng Des Sel. 2009 Sep;22(9):575-86. doi: 10.1093/protein/gzp042. Epub 2009 Jul 30.

引用本文的文献

1
2
Improved Poisson-Boltzmann Methods for High-Performance Computing.
J Chem Theory Comput. 2019 Nov 12;15(11):6190-6202. doi: 10.1021/acs.jctc.9b00602. Epub 2019 Sep 30.
3
An efficient second-order poisson-boltzmann method.
J Comput Chem. 2019 May 5;40(12):1257-1269. doi: 10.1002/jcc.25783. Epub 2019 Feb 18.
4
Evaluating the dynamics and electrostatic interactions of folded proteins in implicit solvents.
Protein Sci. 2016 Jan;25(1):204-18. doi: 10.1002/pro.2753. Epub 2015 Sep 3.
6
A revised density function for molecular surface definition in continuum solvent models.
J Chem Theory Comput. 2010 Apr 13;6(4):1157-1169. doi: 10.1021/ct900318u.
7
An arginine-aspartate network in the active site of bacterial TruB is critical for catalyzing pseudouridine formation.
Nucleic Acids Res. 2014 Apr;42(6):3857-70. doi: 10.1093/nar/gkt1331. Epub 2013 Dec 26.
8
A non-catalytic histidine residue influences the function of the metalloprotease of Listeria monocytogenes.
Microbiology (Reading). 2014 Jan;160(Pt 1):142-148. doi: 10.1099/mic.0.071779-0. Epub 2013 Oct 18.
10
Fast Analytical Methods for Macroscopic Electrostatic Models in Biomolecular Simulations.
SIAM Rev Soc Ind Appl Math. 2011 Nov 7;53(4):683-720. doi: 10.1137/090774288.

本文引用的文献

1
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
2
Exploring peptide energy landscapes: a test of force fields and implicit solvent models.
Proteins. 2004 Dec 1;57(4):665-77. doi: 10.1002/prot.20247.
3
The determinants of carboxyl pKa values in turkey ovomucoid third domain.
Proteins. 2004 May 15;55(3):689-704. doi: 10.1002/prot.20032.
4
Recent advances in the development and application of implicit solvent models in biomolecule simulations.
Curr Opin Struct Biol. 2004 Apr;14(2):217-24. doi: 10.1016/j.sbi.2004.03.009.
5
A semi-implicit solvent model for the simulation of peptides and proteins.
J Comput Chem. 2004 Jun;25(8):1015-29. doi: 10.1002/jcc.20031.
6
Improved treatment of the protein backbone in empirical force fields.
J Am Chem Soc. 2004 Jan 28;126(3):698-9. doi: 10.1021/ja036959e.
7
Structure, dynamics, and energetics of water at the surface of a small globular protein: a molecular dynamics simulation.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Aug;68(2 Pt 1):021921. doi: 10.1103/PhysRevE.68.021921. Epub 2003 Aug 28.
8
Key issues in the computational simulation of GPCR function: representation of loop domains.
J Comput Aided Mol Des. 2002 Nov;16(11):841-53. doi: 10.1023/a:1023845015343.
9
The contribution of polar group burial to protein stability is strongly context-dependent.
J Biol Chem. 2003 Aug 22;278(34):31790-5. doi: 10.1074/jbc.M304177200. Epub 2003 Jun 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验