Suppr超能文献

从基因列表中发现主题以识别和查看多个功能组。

Theme discovery from gene lists for identification and viewing of multiple functional groups.

作者信息

Pehkonen Petri, Wong Garry, Törönen Petri

机构信息

Department of Neurobiology, A,I, Virtanen-Institute, University of Kuopio P,O, Box 1627, FIN-70211 Kuopio, Finland.

出版信息

BMC Bioinformatics. 2005 Jun 29;6:162. doi: 10.1186/1471-2105-6-162.

Abstract

BACKGROUND

High throughput methods of the genome era produce vast amounts of data in the form of gene lists. These lists are large and difficult to interpret without advanced computational or bioinformatic tools. Most existing methods analyse a gene list as a single entity although it is comprised of multiple gene groups associated with separate biological functions. Therefore it is imperative to define and visualize gene groups with unique functionality within gene lists.

RESULTS

In order to analyse the functional heterogeneity within a gene list, we have developed a method that clusters genes to groups with homogenous functionalities. The method uses Non-negative Matrix Factorization (NMF) to create several clustering results with varying numbers of clusters. The obtained clustering results are combined into a simple graphical presentation showing the functional groups over-represented in the analyzed gene list. We demonstrate its performance on two data sets and show results that improve upon existing methods. The comparison also shows that our method creates a more simplified view that aids in discovery of biological themes within the list and discards less informative classes from the results.

CONCLUSION

The presented method and associated software are useful for the identification and interpretation of biological functions associated with gene lists and are especially useful for the analysis of large lists.

摘要

背景

基因组时代的高通量方法以基因列表的形式产生了大量数据。这些列表规模庞大,如果没有先进的计算或生物信息工具,很难进行解读。大多数现有方法将基因列表作为一个单一实体进行分析,尽管它由与不同生物学功能相关的多个基因组组成。因此,必须在基因列表中定义并可视化具有独特功能的基因组。

结果

为了分析基因列表中的功能异质性,我们开发了一种方法,将基因聚类到具有相同功能的组中。该方法使用非负矩阵分解(NMF)来创建具有不同数量聚类的多个聚类结果。将获得的聚类结果组合成一个简单的图形展示,显示在分析的基因列表中过度富集的功能组。我们在两个数据集上展示了它的性能,并显示出比现有方法更好的结果。比较还表明,我们的方法创建了一个更简化的视图,有助于发现列表中的生物学主题,并从结果中舍弃信息量较少的类别。

结论

所提出的方法和相关软件对于识别和解释与基因列表相关的生物学功能很有用,尤其对于大型列表的分析非常有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/548d/1190153/ae34440e6678/1471-2105-6-162-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验