NTP CERHR MON. 2005 Feb(14):v-I-2, II-xi-166, III-1-74.
Acrylamide, used in the manufacture of polyacrylamide and grouting agents, is produced during the cooking of foods. Workplace exposure to acrylamide can occur through the dermal and inhalation routes. The objectives of this study were to evaluate the metabolism of acrylamide in humans following oral administration, to compare hemoglobin adduct formation on oral and dermal administration, to measure hormone levels, and to monitor the safety of acrylamide in people exposed under controlled conditions. Prior to conducting exposures in humans, a low-dose study was conducted in rats administered 3 mg/kg 1,2,3-¹³C₃acrylamide by gavage. The study protocol was reviewed and approved by Institute Review Boards both at RTI which performed the sample analysis, and the clinical research center conducting the study. 1,2,3-¹³C₃Acrylamide (AM) was administered in an aqueous solution orally (single dose of 0.5, 1.0,or 3.0 mg/kg) or dermally (3 daily doses of 3.0 mg/kg) to sterile male volunteers. Urine samples (3 mg/kg oral dose) were analyzed for AM metabolites using 13C NMR spectroscopy. Approximately 86 % of the urinary metabolites were derived from GSH conjugation, and excreted as N-acetyl-S-(3-amino-3-oxopropyl)cysteine and its S-oxide.Glycidamide, glycer amide, and low levels of N-acetyl-S-(3-amino-2-hydroxy-3-oxopropyl)cysteine were detected in urine. On oral administration, a linear dose response was observed for N-(2-carbamoylethyl)valine (AAVal) and N-(2-carbamoyl-2-hydroxyethyl)valine (GAVal) in hemoglobin. Dermal administration resulted in lower levels of AAVal and GAVal. This study indicated that humans metabolize acrylamide via glycidamide to a lesser extent than rodents, and dermal uptake was approximately 5%of that observed with oral uptake. Acrylamide is used in the manufacture of water- soluble polymers (European Union,2002). These polymers are then used for wastewater and sludge treatment, paper manufacture, soil stabilization, mining and many other uses (European Union, 2002).Acrylamide is also a chemical intermediate in the manufacture of other monomeric chemicals and used for grouting and preparation of laboratory gels for electrophoresis.Human exposure through these applications is very small (European Union, 2002).Previously, it has been postulated that dermal absorption was the major route of human exposure to acrylamide (European Union, 2002). The magnitude of this dermal absorption is highly relevant as one of the uses of acrylamide based polymers is in the formulation of skin creams (European Union, 2002). Estimates of dermal absorption based on in vitro and rodent studies have ranged from 3% to 100 (European Union,2002). Recently, exposure to acrylamide in a variety of cooked foods has been described(Rosen and Hellen as, 2002; Tareke et al., 2002). Human exposure via this route is substantial, with estimated exposures as high as 70 μg per day proposed (Tareke et al.,2002). Acrylamide is metabolized by two main pathways: glutathione conjugation (Dixit et al.,1982; Edwards, 1975; Hashimoto and Aldridge, 1970; Miller et al., 1982; Sumner et al.,1992), and oxidation to glycidamide (Calleman et al., 1990; Sumner et al., 1992). The metabolism of acrylamide in vivo results in the formation of a number of metabolites.These metabolism of acrylamide in vivo has been investigated by administration of 1,2,3-13C3 acrylamide to rodents, with the detection and quantitation of metabolites by 13 CNMR spectroscopy (Sumner et al., 1999; Sumner et al., 1992; Sumner et al., 2003). The oxidation reaction to glycidamide is catalyzed by cytochrome P450 2E1 in rodents(Sumner et al., 1999). Both acrylamide and glycidamide react with hemoglobin producing a stable adduct which can be measured as an indicator of exposure.Correlations have been made with hemoglobin adducts and neurotoxicity, but there has been no systematic standardization of hemoglobin adducts with dose. Glycidamide is weakly mutagenic in the Salmonella test (Hashimoto and Tanii, 1985). It can react with DNA in vitro to produce a guanine derivative N7-(2-carbamoyl-2-hydroxyethyl)guanine(Gamboa da Costa et al., 2003; Segerback et al., 1995). In vivo, administration of acrylamide to rats and mice produces low levels of N7-(2-carbamoyl-2-hydroxyethyl)guanine (Gamboa da Costa et al., 2003; Segerback et al., 1995).Acrylamide induces a characteristic peripheral neurotoxicity in animals and man(Spencer and Schaumburg, 1974a, b, 1975). This toxicity manifests itself as a distal to proximal loss of nerve function and dying back of cells. Acrylamide also effects rodent reproduction, namely smaller litter size. At elevated acrylamide doses other reproductive effects are seen, likely as a consequence of the neurotoxicity. Acrylamide is carcinogenic in drinking water studies in laboratory rats (Friedman et al.,1995; Johnson et al., 1986). In male rats, it induces tumors of the tunica vaginalis testes and the thyroid, while in females, it induces mammary fibroadenomas and thyroid tumors(Friedman et al., 1995). The mechanism for this tumorigenicity is unclear, although interaction with the dopamine receptor has been postulated as well as genotoxicity (Tyland Friedman, 2003). If the mechanism were genotoxicity, then conversion of acrylamide to glycidamide is directly proportional to carcinogenic activity.Understanding the mechanism of tumorigenicity is important, since conventional risk assessment techniques place the order of magnitude of the risk at approximately 10-3 with exposures of 70 μg/ day.The relative contributions of acrylamide and glycidamide in the mode of action of acrylamide are the subject of debate and current research. Understanding the conversion of acrylamide to glycidamide and differences that may occur between species, exposure route, and dose are important considerations in assessing the risk of the possible effects of acrylamide exposures in the diet, in consumer products, and in the workplace.The primary objectives of this study were to evaluate the conversion of acrylamide to glycidamide in people exposed to acrylamide, and to evaluate the extent of uptake following dermal administration. This was conducted by administering a low dose of 13C labeled acrylamide to volunteers orally or dermally, and by measuring urinary metabolites or hemoglobin adducts derived from the glycidamide pathway and comparing them to metabolites and hemoglobin adducts derived from acrylamide directly. More specifically, we intended to evaluate urinary metabolites and hemoglobin adducts, and to measure hormone levels after exposure to a known dose of acrylamide. As a secondary and no less important objective, we intended to monitor the safety of acrylamide in people exposed under controlled conditions.
丙烯酰胺用于制造聚丙烯酰胺和灌浆剂,在食物烹饪过程中会产生。工作场所接触丙烯酰胺可通过皮肤和吸入途径发生。本研究的目的是评估口服丙烯酰胺后人体的代谢情况,比较口服和皮肤给药后血红蛋白加合物的形成情况,测量激素水平,并监测在受控条件下接触丙烯酰胺的人群中丙烯酰胺的安全性。在对人体进行暴露实验之前,先对大鼠进行了低剂量研究,通过灌胃给予大鼠3 mg/kg的1,2,3-¹³C₃丙烯酰胺。该研究方案经过了进行样本分析的RTI机构审查委员会以及开展该研究的临床研究中心的审查和批准。向无菌雄性志愿者口服(单剂量0.5、1.0或3.0 mg/kg)或经皮肤(每日3剂量,每剂量3.0 mg/kg)给予1,2,3-¹³C₃丙烯酰胺(AM)水溶液。使用¹³C核磁共振波谱分析口服剂量为3 mg/kg的尿液样本中的AM代谢物。大约86%的尿液代谢物来自谷胱甘肽结合,并以N-乙酰-S-(3-氨基-3-氧代丙基)半胱氨酸及其S-氧化物的形式排泄。尿液中检测到了环氧丙酰胺、甘油酰胺和低水平的N-乙酰-S-(3-氨基-2-羟基-3-氧代丙基)半胱氨酸。口服给药后,血红蛋白中的N-(2-氨甲酰基乙基)缬氨酸(AAVal)和N-(2-氨甲酰基-2-羟乙基)缬氨酸(GAVal)呈现线性剂量反应。皮肤给药导致AAVal和GAVal水平较低。该研究表明,人类通过环氧丙酰胺代谢丙烯酰胺的程度低于啮齿动物,经皮肤吸收约为口服吸收的5%。丙烯酰胺用于制造水溶性聚合物(欧盟,2002年)。这些聚合物随后用于废水和污泥处理、造纸、土壤稳定、采矿及许多其他用途(欧盟,2002年)。丙烯酰胺也是制造其他单体化学品的化学中间体,用于灌浆和制备实验室电泳凝胶。通过这些应用导致的人体接触量非常小(欧盟,2002年)。此前,有人推测皮肤吸收是人体接触丙烯酰胺的主要途径(欧盟,2002年)。这种皮肤吸收的程度非常重要,因为基于丙烯酰胺的聚合物的用途之一是用于配制护肤霜(欧盟,2002年)。基于体外和啮齿动物研究对皮肤吸收的估计范围为3%至100%(欧盟,2002年)。最近,已描述了在各种熟食中接触丙烯酰胺的情况(罗森和海伦斯,2002年;塔雷克等人,2002年)。通过该途径的人体接触量很大,有人提出估计接触量高达每天70μg(塔雷克等人,2002年)。丙烯酰胺通过两种主要途径代谢:谷胱甘肽结合(迪克西特等人,1982年;爱德华兹,1975年;桥本和奥尔德里奇,1970年;米勒等人,1982年;萨姆纳等人,1992年),以及氧化为环氧丙酰胺(卡尔曼等人,1990年;萨姆纳等人,1992年)。丙烯酰胺在体内的代谢会产生多种代谢物。通过向啮齿动物给予1,2,3-¹³C₃丙烯酰胺,并使用¹³C核磁共振波谱检测和定量代谢物,对丙烯酰胺在体内的这些代谢情况进行了研究(萨姆纳等人,1999年;萨姆纳等人,1992年;萨姆纳等人,2003年)。在啮齿动物中,环氧丙酰胺的氧化反应由细胞色素P450 2E1催化(萨姆纳等人,1999年)。丙烯酰胺和环氧丙酰胺都会与血红蛋白反应生成稳定的加合物,该加合物可作为接触指标进行测量。已将血红蛋白加合物与神经毒性进行了关联,但血红蛋白加合物与剂量之间尚未进行系统的标准化。环氧丙酰胺在沙门氏菌试验中具有弱致突变性(桥本和谷井,1985年)。它可在体外与DNA反应生成鸟嘌呤衍生物N7-(2-氨甲酰基-2-羟乙基)鸟嘌呤(甘博亚·达·科斯塔等人,2003年;塞格巴克等人,1995年)。在体内,给大鼠和小鼠施用丙烯酰胺会产生低水平的N7-(2-氨甲酰基-2-羟乙基)鸟嘌呤(甘博亚·达·科斯塔等人,2003年;塞格巴克等人,1995年)。丙烯酰胺在动物和人类中会诱发特征性的周围神经毒性(斯宾塞和绍恩伯格,1974a、b、1975年)。这种毒性表现为神经功能从远端到近端的丧失以及细胞的逆行性死亡。丙烯酰胺还会影响啮齿动物的繁殖,即产仔数减少。在丙烯酰胺剂量升高时,会出现其他生殖影响,这可能是神经毒性的结果。在实验室大鼠的饮用水研究中,丙烯酰胺具有致癌性(弗里德曼等人,1995年;约翰逊等人,1986年)。在雄性大鼠中,它会诱发睾丸鞘膜瘤和甲状腺肿瘤,而在雌性大鼠中,它会诱发乳腺纤维腺瘤和甲状腺肿瘤(弗里德曼等人,1995年)。这种致癌性机制尚不清楚,尽管有人推测与多巴胺受体相互作用以及基因毒性有关(泰兰德·弗里德曼,2003年)。如果机制是基因毒性,那么丙烯酰胺向环氧丙酰胺的转化与致癌活性成正比。了解致癌性机制很重要,因为传统的风险评估技术将风险量级估计为约10⁻³,暴露量为每天70μg。丙烯酰胺和环氧丙酰胺在丙烯酰胺作用方式中的相对贡献是当前争论和研究的主题。了解丙烯酰胺向环氧丙酰胺的转化以及不同物种、暴露途径和剂量之间可能存在的差异,是评估饮食、消费品和工作场所中丙烯酰胺暴露可能产生的影响风险的重要考虑因素。本研究的主要目的是评估接触丙烯酰胺的人群中丙烯酰胺向环氧丙酰胺的转化情况,并评估经皮肤给药后的吸收程度。这是通过向志愿者口服或经皮肤给予低剂量的¹³C标记丙烯酰胺,并测量来自环氧丙酰胺途径的尿液代谢物或血红蛋白加合物,并将它们与直接来自丙烯酰胺的代谢物和血红蛋白加合物进行比较来实现的。更具体地说,我们旨在评估尿液代谢物和血红蛋白加合物,并在接触已知剂量的丙烯酰胺后测量激素水平。作为次要但同样重要的目标,我们旨在监测在受控条件下接触丙烯酰胺的人群中丙烯酰胺的安全性。