Pittelkow Yvonne, Wilson Susan R
Centre for Bioinformation Science, Mathematical Sciences Institute, Australian National University, Canberra, ACT 0200, Australia.
Biometrics. 2005 Jun;61(2):630-2; discussion 632-4. doi: 10.1111/j.1541-0420.2005.00366.x.
This note is in response to Wouters et al. (2003, Biometrics 59, 1131-1139) who compared three methods for exploring gene expression data. Contrary to their summary that principal component analysis is not very informative, we show that it is possible to determine principal component analyses that are useful for exploratory analysis of microarray data. We also present another biplot representation, the GE-biplot (Gene Expression biplot), that is a useful method for exploring gene expression data with the major advantage of being able to aid interpretation of both the samples and the genes relative to each other.
本注释是对Wouters等人(2003年,《生物统计学》59卷,第1131 - 1139页)的回应,他们比较了三种探索基因表达数据的方法。与他们认为主成分分析信息量不大的总结相反,我们表明可以确定对微阵列数据进行探索性分析有用的主成分分析。我们还提出了另一种双标图表示法,即基因表达双标图(GE - 双标图),它是探索基因表达数据的一种有用方法,其主要优点是能够辅助解释样本和基因之间的相互关系。