Suppr超能文献

比对与系统发育的联合贝叶斯估计。

Joint Bayesian estimation of alignment and phylogeny.

作者信息

Redelings Benjamin D, Suchard Marc A

机构信息

Department of Biomathematics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1766, USA.

出版信息

Syst Biol. 2005 Jun;54(3):401-18. doi: 10.1080/10635150590947041.

Abstract

We describe a novel model and algorithm for simultaneously estimating multiple molecular sequence alignments and the phylogenetic trees that relate the sequences. Unlike current techniques that base phylogeny estimates on a single estimate of the alignment, we take alignment uncertainty into account by considering all possible alignments. Furthermore, because the alignment and phylogeny are constructed simultaneously, a guide tree is not needed. This sidesteps the problem in which alignments created by progressive alignment are biased toward the guide tree used to generate them. Joint estimation also allows us to model rate variation between sites when estimating the alignment and to use the evidence in shared insertion/deletions (indels) to group sister taxa in the phylogeny. Our indel model makes use of affine gap penalties and considers indels of multiple letters. We make the simplifying assumption that the indel process is identical on all branches. As a result, the probability of a gap is independent of branch length. We use a Markov chain Monte Carlo (MCMC) method to sample from the posterior of the joint model, estimating the most probable alignment and tree and their support simultaneously. We describe a new MCMC transition kernel that improves our algorithm's mixing efficiency, allowing the MCMC chains to converge even when started from arbitrary alignments. Our software implementation can estimate alignment uncertainty and we describe a method for summarizing this uncertainty in a single plot.

摘要

我们描述了一种用于同时估计多个分子序列比对以及关联这些序列的系统发育树的新模型和算法。与当前基于比对的单一估计来进行系统发育估计的技术不同,我们通过考虑所有可能的比对来纳入比对的不确定性。此外,由于比对和系统发育是同时构建的,因此不需要引导树。这避免了渐进比对所创建的比对偏向于用于生成它们的引导树这一问题。联合估计还使我们在估计比对时能够对位点间的速率变化进行建模,并利用共享插入/缺失(indel)中的证据在系统发育中对姊妹分类群进行分组。我们的indel模型使用仿射空位罚分并考虑多个字母的indel。我们做出一个简化假设,即indel过程在所有分支上是相同的。因此,空位的概率与分支长度无关。我们使用马尔可夫链蒙特卡罗(MCMC)方法从联合模型的后验中进行采样,同时估计最可能的比对和树及其支持度。我们描述了一种新的MCMC转移核,它提高了我们算法的混合效率,即使从任意比对开始,也能使MCMC链收敛。我们的软件实现可以估计比对的不确定性,并且我们描述了一种在单个图中总结这种不确定性的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验