Amatore Christian, Oleinick Alexander, Klymenko Oleksiy V, Svir Irina
Ecole Normale Supérieure, Department de Chimie, UMR CNRS 8640 PASTEUR, 24 rue Lhomond, 75231 Paris Cedex 05, France.
Chemphyschem. 2005 Aug 12;6(8):1581-9. doi: 10.1002/cphc.200500129.
Herein, we propose a method for reconstructing any plausible macroscopic hydrodynamic flow profile occurring locally within a rectangular microfluidic channel. The method is based on experimental currents measured at single or double microband electrodes embedded in one channel wall. A perfectly adequate quasiconformal mapping of spatial coordinates introduced in our previous work [Electrochem. Commun. 2004, 6, 1123] and an exponentially expanding time grid, initially proposed [J. Electroanal. Chem. 2003, 557, 75] in conjunction with the solution of the corresponding variational problem approached by the Ritz method are used for the numerical reconstruction of flow profiles. Herein, the concept of the method is presented and developed theoretically and its validity is tested on the basis of the use of pseudoexperimental currents emulated by simulation of the diffusion-convection problem in a channel flow cell, to which a random Gaussian current noise is added. The flow profiles reconstructed by our method compare successfully with those introduced a priori into the simulations, even when these include significant distortions compared with either classical Poiseuille or electro-osmotic flows.
在此,我们提出一种方法,用于重建矩形微流控通道内局部出现的任何合理的宏观流体动力学流动剖面。该方法基于在嵌入一个通道壁中的单微带或双微带电极上测量的实验电流。我们使用在先前工作[《电化学通讯》,2004年,第6卷,第1123页]中引入的空间坐标的完全合适的拟共形映射以及最初[《电分析化学杂志》,2003年,第557卷,第75页]与通过里兹方法求解相应变分问题结合提出的指数扩展时间网格,对流动剖面进行数值重建。在此,介绍并从理论上发展了该方法的概念,并基于使用通过模拟通道流动池中扩散 - 对流问题模拟的伪实验电流对其有效性进行了测试,向该模拟中添加了随机高斯电流噪声。即使这些模拟的流动剖面与经典泊肃叶流或电渗流相比包含显著畸变,我们的方法重建的流动剖面也能成功地与先验引入模拟中的剖面进行比较。