Torres-Roca Javier F, Eschrich Steven, Zhao Haiyan, Bloom Gregory, Sung Jimmy, McCarthy Susan, Cantor Alan B, Scuto Anna, Li Changgong, Zhang Suming, Jove Richard, Yeatman Timothy
Department of Interdisciplinary Oncology, University of South Florida College of Medicine and H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA.
Cancer Res. 2005 Aug 15;65(16):7169-76. doi: 10.1158/0008-5472.CAN-05-0656.
The development of a successful radiation sensitivity predictive assay has been a major goal of radiation biology for several decades. We have developed a radiation classifier that predicts the inherent radiosensitivity of tumor cell lines as measured by survival fraction at 2 Gy (SF2), based on gene expression profiles obtained from the literature. Our classifier correctly predicts the SF2 value in 22 of 35 cell lines from the National Cancer Institute panel of 60, a result significantly different from chance (P = 0.0002). In our approach, we treat radiation sensitivity as a continuous variable, significance analysis of microarrays is used for gene selection, and a multivariate linear regression model is used for radiosensitivity prediction. The gene selection step identified three novel genes (RbAp48, RGS19, and R5PIA) of which expression values are correlated with radiation sensitivity. Gene expression was confirmed by quantitative real-time PCR. To biologically validate our classifier, we transfected RbAp48 into three cancer cell lines (HS-578T, MALME-3M, and MDA-MB-231). RbAp48 overexpression induced radiosensitization (1.5- to 2-fold) when compared with mock-transfected cell lines. Furthermore, we show that HS-578T-RbAp48 overexpressors have a higher proportion of cells in G2-M (27% versus 5%), the radiosensitive phase of the cell cycle. Finally, RbAp48 overexpression is correlated with dephosphorylation of Akt, suggesting that RbAp48 may be exerting its effect by antagonizing the Ras pathway. The implications of our findings are significant. We establish that radiation sensitivity can be predicted based on gene expression profiles and we introduce a genomic approach to the identification of novel molecular markers of radiation sensitivity.
几十年来,开发一种成功的辐射敏感性预测检测方法一直是辐射生物学的主要目标。我们基于从文献中获得的基因表达谱,开发了一种辐射分类器,该分类器可预测肿瘤细胞系的固有辐射敏感性,以2 Gy时的存活分数(SF2)来衡量。我们的分类器正确预测了美国国立癌症研究所60个细胞系面板中35个细胞系中的22个的SF2值,这一结果与随机情况有显著差异(P = 0.0002)。在我们的方法中,我们将辐射敏感性视为一个连续变量,使用微阵列显著性分析进行基因选择,并使用多元线性回归模型进行辐射敏感性预测。基因选择步骤确定了三个新基因(RbAp48、RGS19和R5PIA),其表达值与辐射敏感性相关。通过定量实时PCR确认了基因表达。为了从生物学上验证我们的分类器,我们将RbAp48转染到三种癌细胞系(HS-578T、MALME-3M和MDA-MB-231)中。与mock转染的细胞系相比,RbAp48过表达诱导了辐射增敏作用(1.5至2倍)。此外,我们表明HS-578T-RbAp48过表达细胞系在细胞周期的辐射敏感阶段G2-M期有更高比例的细胞(27%对5%)。最后,RbAp48过表达与Akt的去磷酸化相关,表明RbAp48可能通过拮抗Ras途径发挥其作用。我们研究结果的意义重大。我们确定可以基于基因表达谱预测辐射敏感性,并且我们引入了一种基因组方法来鉴定辐射敏感性的新型分子标记。