Suppr超能文献

结合系统发育基序发现和基序聚类来预测共调控基因。

Combining phylogenetic motif discovery and motif clustering to predict co-regulated genes.

作者信息

Jensen Shane T, Shen Lei, Liu Jun S

机构信息

Department of Statistics, The Wharton School, University of Pennsylvania, USA.

出版信息

Bioinformatics. 2005 Oct 15;21(20):3832-9. doi: 10.1093/bioinformatics/bti628. Epub 2005 Aug 16.

Abstract

MOTIVATION

We present a sequence-based framework and algorithm PHYLOCLUS for predicting co-regulated genes. In our approach, de novo discovery methods are used to find motifs conserved by evolution and then a Bayesian hierarchical clustering model is used to cluster these motifs, thereby grouping together genes that are putatively co-regulated. Our clustering procedure allows both the number of clusters and the motif width within each cluster to be unknown.

RESULTS

We use our framework to predict co-regulated genes in the bacterium Bacillus subtilis using six other closely related bacterial species. Our predicted motifs and gene clusters are validated using several external sources and significant clusters are examined in detail. An extension to the discovery and clustering of two-block motifs can be used for inference about synergistic binding relationships between transcription factors.

AVAILABILITY

Software and Supplementary Materials can be downloaded at http://stat.wharton.upenn.edu/~stjensen/research/phyloclus.html or http://www.fas.harvard.edu/~junliu/phyloclus.html

CONTACT

stjensen@wharton.upenn.edu.

摘要

动机

我们提出了一个基于序列的框架和算法PHYLOCLUS来预测共调控基因。在我们的方法中,从头发现方法用于寻找进化保守的基序,然后使用贝叶斯层次聚类模型对这些基序进行聚类,从而将假定共调控的基因聚集在一起。我们的聚类过程允许聚类数量和每个聚类中的基序宽度均未知。

结果

我们使用我们的框架,利用其他六个密切相关的细菌物种来预测枯草芽孢杆菌中的共调控基因。我们预测的基序和基因簇通过几个外部来源进行了验证,并对显著的聚类进行了详细检查。对双块基序的发现和聚类的扩展可用于推断转录因子之间的协同结合关系。

可用性

软件和补充材料可从http://stat.wharton.upenn.edu/~stjensen/research/phyloclus.html或http://www.fas.harvard.edu/~junliu/phyloclus.html下载。

联系方式

stjensen@wharton.upenn.edu

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验