Li Xiaoliang, Yang Jie, Xie Kai, Zhu Y M
Institute of Image Processing & Pattern Recognition, Shanghai Jiaotong University, Shanghai, China.
Comput Biol Med. 2006 Sep;36(9):1014-25. doi: 10.1016/j.compbiomed.2005.05.005. Epub 2005 Aug 29.
Visualizing efficiently volumetric data still remains a challenge in many fields such as medical imaging and scientific visualization. Monte Carlo volume rendering is a novel and efficient visualization technique for very large datasets. However, when taking into account depth cueing, the volume rendering integral becomes complex, and it is difficult to sample efficiently and in a viewing-independent manner. In this paper, we propose an efficient volume rendering method by dividing the volume rendering integral into four sub-integrals and enabling sampling in each sub-integral to be "best" while achieving viewing independency. As a result, we get a better estimation of the integral than the classical sampling method. The results show that thus rendered images exhibit high quality.
在医学成像和科学可视化等许多领域,高效地可视化体数据仍然是一项挑战。蒙特卡洛体绘制是一种针对超大型数据集的新颖且高效的可视化技术。然而,考虑到深度提示时,体绘制积分会变得复杂,并且难以以与视图无关的方式进行高效采样。在本文中,我们提出了一种高效的体绘制方法,即将体绘制积分划分为四个子积分,并使每个子积分中的采样在实现视图独立性的同时达到“最佳”。结果,我们比传统采样方法能更好地估计积分。结果表明,这样渲染出的图像具有高质量。