Fay Nicolas, Redeker Virginie, Savistchenko Jimmy, Dubois Steven, Bousset Luc, Melki Ronald
Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.
J Biol Chem. 2005 Nov 4;280(44):37149-58. doi: 10.1074/jbc.M506917200. Epub 2005 Aug 30.
The Ure2 protein from the yeast Saccharomyces cerevisiae has prion properties. In vitro and at neutral pH, soluble Ure2p spontaneously forms long, straight, insoluble protein fibrils. Two models have been proposed to account for the assembly of Ure2p into protein fibrils. The "amyloid backbone" model postulates that a segment ranging from 40 to 70 amino acids in the flexible N-terminal domain from different Ure2p molecules forms a parallel superpleated beta-structure running along the fibrils. The second model hypothesizes that assembly of full-length Ure2p is driven by limited conformational rearrangements and non-native inter- and/or intramolecular interactions between Ure2p monomers. Here, we performed a cysteine scan on residues located in the N- and C-terminal parts of Ure2p to determine whether these domains interact. Amino acid sequences centered around residue 6 in the N-terminal domain of Ure2p and residue 137 in the C-terminal moiety interacted at least transiently via intramolecular interactions. We documented the assembly properties of a Ure2p variant in which a disulfide bond was established between the N- and C-terminal domains and showed that it possesses assembly properties indistinguishable from those of wild-type Ure2p. We probed the structure of Ure2pC6C137 within the fibrils and demonstrate that the polypeptide is in a conformation similar to that of its soluble assembly-competent state. Our results constitute the first structural characterization of the N-terminal domain of Ure2p in both its soluble assembly-competent and fibrillar forms. Our data indicate that the flexibility of the N-terminal domain and conformational changes within this domain are essential for fibril formation and provide new insight into the conformational rearrangements that lead to the assembly of Ure2p into fibrils and the propagation of the [URE3] phenotype in yeast.
来自酿酒酵母的Ure2蛋白具有朊病毒特性。在体外且处于中性pH条件下,可溶性Ure2p会自发形成长而直的不溶性蛋白纤维。已提出两种模型来解释Ure2p组装成蛋白纤维的过程。“淀粉样主干”模型假定,来自不同Ure2p分子的柔性N端结构域中一段40至70个氨基酸的片段形成沿纤维排列的平行超折叠β结构。第二种模型假设全长Ure2p的组装是由Ure2p单体之间有限的构象重排以及非天然的分子间和/或分子内相互作用驱动的。在此,我们对位于Ure2p N端和C端部分的残基进行了半胱氨酸扫描,以确定这些结构域是否相互作用。以Ure2p N端结构域中的第6位残基和C端部分中的第137位残基为中心的氨基酸序列至少通过分子内相互作用发生了瞬时相互作用。我们记录了一种Ure2p变体的组装特性,该变体在N端和C端结构域之间建立了二硫键,并表明其具有与野生型Ure2p无法区分的组装特性。我们探究了纤维内Ure2pC6C137的结构,并证明该多肽处于与其可溶性组装能力状态相似的构象。我们的结果构成了Ure2p N端结构域在其可溶性组装能力形式和纤维状形式下的首次结构表征。我们的数据表明,N端结构域的灵活性以及该结构域内的构象变化对于纤维形成至关重要,并为导致Ure2p组装成纤维以及酵母中[URE3]表型传播的构象重排提供了新的见解。