Suppr超能文献

复杂的转录调控将大肠杆菌中NikABCDE依赖的镍转运与氢化酶表达联系起来。

Complex transcriptional control links NikABCDE-dependent nickel transport with hydrogenase expression in Escherichia coli.

作者信息

Rowe Jessica L, Starnes G Lucas, Chivers Peter T

机构信息

Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri 63110, USA.

出版信息

J Bacteriol. 2005 Sep;187(18):6317-23. doi: 10.1128/JB.187.18.6317-6323.2005.

Abstract

Escherichia coli requires nickel under anaerobic growth conditions for the synthesis of catalytically active NiFe hydrogenases. Transcription of the NikABCDE nickel transporter, which is required for NiFe hydrogenase synthesis, was previously shown to be upregulated by FNR (fumarate-nit rate regulator) in the absence of oxygen and repressed by the NikR repressor in the presence of high extracellular nickel levels. We present here a detailed analysis of nikABCDE transcriptional regulation and show that it closely correlates with hydrogenase expression levels. We identify a nitrate-dependent mechanism for nikABCDE repression that is linked to the NarLX two-component system. NikR is functional under all nickel conditions tested, but its activity is modulated by the total nickel concentration present as well as by one or more components of the hydrogenase assembly pathway. Unexpectedly, NikR function is independent of NikABCDE function, suggesting that NikABCDE is a hydrogenase-specific nickel transporter, consistent with its original identification as a hydrogenase (hyd) mutant. Further, the results suggest that the hydrogenase assembly pathway is sequestered within the cell. A second nickel import pathway in E. coli is implicated in NikR function.

摘要

大肠杆菌在厌氧生长条件下合成具有催化活性的镍铁氢化酶需要镍。镍铁氢化酶合成所需的NikABCDE镍转运蛋白的转录,先前已表明在无氧条件下由FNR(延胡索酸 - 硝酸盐调节因子)上调,而在细胞外镍水平高时由NikR阻遏物抑制。我们在此对nikABCDE转录调控进行了详细分析,并表明其与氢化酶表达水平密切相关。我们确定了一种与NarLX双组分系统相关的nikABCDE抑制的硝酸盐依赖性机制。NikR在所有测试的镍条件下均有功能,但其活性受到总镍浓度以及氢化酶组装途径的一种或多种组分的调节。出乎意料的是,NikR功能独立于NikABCDE功能,这表明NikABCDE是一种氢化酶特异性镍转运蛋白,与其最初被鉴定为氢化酶(hyd)突变体一致。此外,结果表明氢化酶组装途径被隔离在细胞内。大肠杆菌中的第二条镍导入途径与NikR功能有关。

相似文献

2
Nickel homeostasis in Escherichia coli - the rcnR-rcnA efflux pathway and its linkage to NikR function.
Mol Microbiol. 2006 Oct;62(1):252-62. doi: 10.1111/j.1365-2958.2006.05369.x. Epub 2006 Aug 31.
3
Histidine 416 of the periplasmic binding protein NikA is essential for nickel uptake in Escherichia coli.
FEBS Lett. 2011 Feb 18;585(4):711-5. doi: 10.1016/j.febslet.2011.01.038. Epub 2011 Feb 1.
4
A whole-cell, high-throughput hydrogenase assay to identify factors that modulate [NiFe]-hydrogenase activity.
J Biol Chem. 2019 Oct 18;294(42):15373-15385. doi: 10.1074/jbc.RA119.008101. Epub 2019 Aug 27.
5
Identification of the nik gene cluster of Brucella suis: regulation and contribution to urease activity.
J Bacteriol. 2001 Jan;183(2):426-34. doi: 10.1128/JB.183.2.426-434.2001.
6
Nickel deficiency gives rise to the defective hydrogenase phenotype of hydC and fnr mutants in Escherichia coli.
Mol Microbiol. 1989 Dec;3(12):1709-18. doi: 10.1111/j.1365-2958.1989.tb00156.x.
7
Helicobacter hepaticus NikR controls urease and hydrogenase activities via the NikABDE and HH0418 putative nickel import proteins.
Microbiology (Reading). 2013 Jan;159(Pt 1):136-146. doi: 10.1099/mic.0.062976-0. Epub 2012 Nov 8.
8
Rhizobium leguminosarum hupE encodes a nickel transporter required for hydrogenase activity.
J Bacteriol. 2010 Feb;192(4):925-35. doi: 10.1128/JB.01045-09. Epub 2009 Dec 18.
9

引用本文的文献

1
An animal charcoal contaminated cottage industry soil highlighted by halophilic archaea dominance and decimation of bacteria.
World J Microbiol Biotechnol. 2024 Sep 20;40(10):327. doi: 10.1007/s11274-024-04136-2.
2
Comparative genomic analysis of nickel homeostasis in cable bacteria.
BMC Genomics. 2024 Jul 15;25(1):692. doi: 10.1186/s12864-024-10594-7.
3
A flow equilibrium of zinc in cells of .
J Bacteriol. 2024 May 23;206(5):e0008024. doi: 10.1128/jb.00080-24. Epub 2024 Apr 25.
4
Overview of pathogenicity and virulence. Insights into the role of metals.
Front Microbiol. 2024 Apr 5;15:1383618. doi: 10.3389/fmicb.2024.1383618. eCollection 2024.
5
Engineered nickel bioaccumulation in by NikABCDE transporter and metallothionein overexpression.
Eng Life Sci. 2023 May 24;23(7):2200133. doi: 10.1002/elsc.202200133. eCollection 2023 Jul.
6
Moving metals: How microbes deliver metal cofactors to metalloproteins.
Mol Microbiol. 2023 Oct;120(4):547-554. doi: 10.1111/mmi.15117. Epub 2023 Jul 5.
7
Comparative Physiology and Genomics of Hydrogen-Producing Vibrios.
Curr Microbiol. 2022 Oct 17;79(12):360. doi: 10.1007/s00284-022-03065-3.
10
The Microbiology of Metal Mine Waste: Bioremediation Applications and Implications for Planetary Health.
Geohealth. 2021 Oct 1;5(10):e2020GH000380. doi: 10.1029/2020GH000380. eCollection 2021 Oct.

本文引用的文献

1
Metal-selective DNA-binding response of Escherichia coli NikR.
Biochemistry. 2004 Aug 10;43(31):10029-38. doi: 10.1021/bi049404k.
2
Selectivity of metal binding and metal-induced stability of Escherichia coli NikR.
Biochemistry. 2004 Aug 10;43(31):10018-28. doi: 10.1021/bi049405c.
4
Biosynthesis of metal sites.
Chem Rev. 2004 Feb;104(2):509-25. doi: 10.1021/cr020613p.
6
Expression and regulation of a silent operon, hyf, coding for hydrogenase 4 isoenzyme in Escherichia coli.
J Bacteriol. 2004 Jan;186(2):580-7. doi: 10.1128/JB.186.2.580-587.2004.
7
Phenotype microarray analysis of Escherichia coli K-12 mutants with deletions of all two-component systems.
J Bacteriol. 2003 Aug;185(16):4956-72. doi: 10.1128/JB.185.16.4956-4972.2003.
9
Nickel coordination is regulated by the DNA-bound state of NikR.
Nat Struct Biol. 2003 Feb;10(2):126-30. doi: 10.1038/nsb890.
10
Molecular hydrogen as an energy source for Helicobacter pylori.
Science. 2002 Nov 29;298(5599):1788-90. doi: 10.1126/science.1077123.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验