Grenier Julien, Trousson Amalia, Chauchereau Anne, Cartaud Jean, Schumacher Michael, Massaad Charbel
Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 488, 80 rue du Général Leclerc, 94276 Le Kremlin-Bicêtre Cedex, France.
Mol Endocrinol. 2006 Feb;20(2):254-67. doi: 10.1210/me.2005-0061. Epub 2005 Sep 22.
In the nervous system, glucocorticoids can exert beneficial or noxious effects, depending on their concentration and the duration of hormonal stimulation. They exert their effects on neuronal and glial cells by means of their cognate receptor, the glucocorticoid receptor (GR), which recruits the p160 coactivator family members SRC-1 (steroid receptor coactivator 1), SRC-2, and SRC-3 after hormone binding. In this study, we investigated the molecular pathways used by the GR in cultured glial cells of the central and the peripheral nervous systems, astrocytes and Schwann cells (MSC80 cells), respectively. We performed functional studies based on transient transfection of a minimal glucocorticoid-sensitive reporter gene into the glial cells to test the influence of overexpression or selective inhibition by short interfering RNA of the three p160 coactivator family members on GR transactivation. We demonstrate that, depending on the glial cell type, GR differentially recruits p160 family members: in Schwann cells, GR recruited SRC-1a, SRC-1e, or SRC-3, whereas in astrocytes, SRC-1e and SRC-2, and to a lesser extent SRC-3, were active toward GR signaling. The C-terminal nuclear receptor-interacting domain of SRC-1a participates in its exclusion from the GR transcriptional complex in astrocytes. Immunolocalization experiments revealed a cell-specific intracellular distribution of the p160s, which was dependent on the duration of the hormonal induction. For example, within astrocytes, SRC-1 and SRC-2 were mainly nuclear, whereas SRC-3 unexpectedly localized to the lumen of the Golgi apparatus. In contrast, in Schwann cells, SRC-1 showed a nucleocytoplasmic shuttling depending on hormonal stimulation, whereas SRC-2 remained strictly nuclear and SRC-3 remained predominantly cytoplasmic. Altogether, these results highlight the cell specificity and the time dependence of p160s recruitment by the activated GR in glial cells, revealing the complexity of GR-p160 assembly in the nervous system.
在神经系统中,糖皮质激素可产生有益或有害的影响,这取决于其浓度和激素刺激的持续时间。它们通过其同源受体糖皮质激素受体(GR)对神经元和神经胶质细胞发挥作用,该受体在激素结合后募集p160共激活因子家族成员SRC-1(类固醇受体共激活因子1)、SRC-2和SRC-3。在本研究中,我们分别研究了GR在中枢和外周神经系统的培养神经胶质细胞、星形胶质细胞和雪旺细胞(MSC80细胞)中所使用的分子途径。我们基于将最小糖皮质激素敏感报告基因瞬时转染到神经胶质细胞中进行功能研究,以测试三种p160共激活因子家族成员的过表达或通过短发夹RNA进行选择性抑制对GR反式激活的影响。我们证明,根据神经胶质细胞类型的不同,GR差异性地募集p160家族成员:在雪旺细胞中,GR募集SRC-1a、SRC-1e或SRC-3,而在星形胶质细胞中,SRC-1e和SRC-2,以及在较小程度上SRC-3,对GR信号传导有活性。SRC-1a的C末端核受体相互作用结构域参与其在星形胶质细胞中被排除在GR转录复合物之外。免疫定位实验揭示了p160s在细胞内的特异性分布,这取决于激素诱导的持续时间。例如,在星形胶质细胞内,SRC-1和SRC-2主要位于细胞核中,而SRC-3意外地定位于高尔基体腔。相反,在雪旺细胞中,SRC-1根据激素刺激表现出核质穿梭,而SRC-2严格保持在细胞核中,SRC-3主要保持在细胞质中。总之,这些结果突出了激活的GR在神经胶质细胞中募集p160s的细胞特异性和时间依赖性,揭示了神经系统中GR-p160组装的复杂性。