Suppr超能文献

从土壤和沉积物中提取砷酸盐和亚砷酸盐物种。

Extraction of arsenate and arsenite species from soils and sediments.

作者信息

Georgiadis Myron, Cai Yong, Solo-Gabriele Helena M

机构信息

Florida International University, Department of Chemistry and Biochemistry and Southeast Environmental Research Center, University Park, Miami, FL 33199, USA.

出版信息

Environ Pollut. 2006 May;141(1):22-9. doi: 10.1016/j.envpol.2005.08.028. Epub 2005 Sep 29.

Abstract

The primary objective of this study was to develop a simple method that can be used to extract the more readily mobilizable and bioavailable arsenic species from soil and sediment while at the same time minimizing the transformation between (AsIII) and (AsV), the two most commonly found arsenic species in the environment. Several extraction strategies were evaluated using phosphate as extractant in combination with either ethylenediaminetetraacetic acid (EDTA), hydroxylamine hydrochloride (NH2OH.HCl), or sodium diethyldithiocarbamate trihydrate (NaDDC). The addition of EDTA in the phosphate solution did not prevent AsIII from oxidation. While promising results were shown when 1% NH2OH.HCl was added, conversion of AsIII began to occur with extended extraction time (> 12 h). Good results were achieved using 10 mM phosphate and 0.5% NaDDC where AsIII oxidation was clearly minimized. The combined phosphate and NaDDC solution was applied to several soil and sediment samples. AsIII spiked was quantitatively recovered in all soil types tested.

摘要

本研究的主要目的是开发一种简单的方法,该方法可用于从土壤和沉积物中提取更易迁移和生物可利用的砷物种,同时尽量减少环境中最常见的两种砷物种(AsIII)和(AsV)之间的转化。使用磷酸盐作为萃取剂,结合乙二胺四乙酸(EDTA)、盐酸羟胺(NH2OH.HCl)或三水合二乙基二硫代氨基甲酸钠(NaDDC),评估了几种萃取策略。在磷酸盐溶液中添加EDTA并不能防止AsIII氧化。虽然添加1%的NH2OH.HCl时显示出了有前景的结果,但随着萃取时间延长(>12小时),AsIII开始发生转化。使用10 mM磷酸盐和0.5%的NaDDC取得了良好的结果,其中AsIII的氧化明显降至最低。将磷酸盐和NaDDC的混合溶液应用于多个土壤和沉积物样品。在所有测试的土壤类型中,加标的AsIII都能被定量回收。

相似文献

1
Extraction of arsenate and arsenite species from soils and sediments.
Environ Pollut. 2006 May;141(1):22-9. doi: 10.1016/j.envpol.2005.08.028. Epub 2005 Sep 29.
2
Sequential extraction method for speciation of arsenate and arsenite in mineral soils.
Anal Chem. 2010 Jul 1;82(13):5534-40. doi: 10.1021/ac100415b.
3
Species variations in the biliary and urinary excretion of arsenate, arsenite and their metabolites.
Comp Biochem Physiol C Toxicol Pharmacol. 2002 Mar;131(3):355-65. doi: 10.1016/s1532-0456(02)00018-2.
4
Comparison of four extraction procedures to assess arsenate and arsenite species in contaminated soils.
Environ Pollut. 2010 May;158(5):1890-8. doi: 10.1016/j.envpol.2009.10.041. Epub 2009 Nov 27.
6
Bacterial ability in AsIII oxidation and AsV reduction: Relation to arsenic tolerance, P uptake, and siderophore production.
Chemosphere. 2015 Nov;138:995-1000. doi: 10.1016/j.chemosphere.2014.12.046. Epub 2015 Jan 6.
7
Bioavailability and speciation of arsenic in carrots grown in contaminated soil.
Analyst. 1998 May;123(5):791-6. doi: 10.1039/a708056e.
8
Mobilization of arsenic by dissolved organic matter from iron oxides, soils and sediments.
Sci Total Environ. 2006 Feb 1;354(2-3):179-90. doi: 10.1016/j.scitotenv.2005.01.027. Epub 2005 Mar 16.
9
Mitochondria work as reactors in reducing arsenate to arsenite.
Toxicol Appl Pharmacol. 2002 Aug 1;182(3):208-18. doi: 10.1006/taap.2002.9443.
10
Arsenic enhanced plant growth and altered rhizosphere characteristics of hyperaccumulator Pteris vittata.
Environ Pollut. 2014 Nov;194:105-111. doi: 10.1016/j.envpol.2014.07.017. Epub 2014 Aug 5.

本文引用的文献

1
Reactions at Oxide Surfaces. 1. Oxidation of As(III) by Synthetic Birnessite.
Environ Sci Technol. 1995 Aug 1;29(8):1898-905. doi: 10.1021/es00008a006.
2
Speciation of arsenic in a contaminated soil by solvent extraction.
Talanta. 1995 Mar;42(3):323-9. doi: 10.1016/0039-9140(95)01395-r.
3
Arsenic speciation of solvent-extracted leachate from new and weathered CCA-treated wood.
Environ Sci Technol. 2004 Sep 1;38(17):4527-34. doi: 10.1021/es049598r.
4
Field and laboratory arsenic speciation methods and their application to natural-water analysis.
Water Res. 2004 Jan;38(2):355-64. doi: 10.1016/j.watres.2003.09.034.
5
A methodological approach for the identification of arsenic bearing phases in polluted soils.
Environ Pollut. 2003;126(1):51-64. doi: 10.1016/s0269-7491(03)00146-5.
6
Assessment of arsenic mobility in the soils of some golf courses in South Florida.
Sci Total Environ. 2002 May 27;291(1-3):123-34. doi: 10.1016/s0048-9697(01)01081-6.
7
Natural organic matter affects arsenic speciation and sorption onto hematite.
Environ Sci Technol. 2002 Jul 1;36(13):2889-96. doi: 10.1021/es0112801.
8
Preserving the distribution of inorganic arsenic species in groundwater and acid mine drainage samples.
Environ Sci Technol. 2002 May 15;36(10):2213-8. doi: 10.1021/es0157651.
9
Arsenic(III) oxidation and arsenic(V) adsorption reactions on synthetic birnessite.
Environ Sci Technol. 2002 Mar 1;36(5):976-81. doi: 10.1021/es0110170.
10
Arsenic(III) oxidation by birnessite and precipitation of manganese(II) arsenate.
Environ Sci Technol. 2002 Feb 1;36(3):493-500. doi: 10.1021/es0109500.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验