Suppr超能文献

温度触发谷氨酸生产过程中诱导的谷氨酸棒杆菌乳酸利用操纵子的特性分析。

Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production.

作者信息

Stansen Corinna, Uy Davin, Delaunay Stephane, Eggeling Lothar, Goergen Jean-Louis, Wendisch Volker F

机构信息

Institute of Biotechnology 1, Research Centre Juelich, D-52425 Juelich, Germany.

出版信息

Appl Environ Microbiol. 2005 Oct;71(10):5920-8. doi: 10.1128/AEM.71.10.5920-5928.2005.

Abstract

Gene expression changes of glutamate-producing Corynebacterium glutamicum were identified in transcriptome comparisons by DNA microarray analysis. During glutamate production induced by a temperature shift, C. glutamicum strain 2262 showed significantly higher mRNA levels of the NCgl2816 and NCgl2817 genes than its non-glutamate-producing derivative 2262NP. Reverse transcription-PCR analysis showed that the two genes together constitute an operon. NCgl2816 putatively codes for a lactate permease, while NCgl2817 was demonstrated to encode quinone-dependent l-lactate dehydrogenase, which was named LldD. C. glutamicum LldD displayed Michaelis-Menten kinetics for the substrate l-lactate with a K(m) of about 0.51 mM. The specific activity of LldD was about 10-fold higher during growth on l-lactate or on an l-lactate-glucose mixture than during growth on glucose, d-lactate, or pyruvate, while the specific activity of quinone-dependent d-lactate dehydrogenase differed little with the carbon source. RNA levels of NCgl2816 and lldD were about 18-fold higher during growth on l-lactate than on pyruvate. Disruption of the NCgl2816-lldD operon resulted in loss of the ability to utilize l-lactate as the sole carbon source. Expression of lldD restored l-lactate utilization, indicating that the function of the permease gene NCgl2816 is dispensable, while LldD is essential, for growth of C. glutamicum on l-lactate.

摘要

通过DNA微阵列分析进行转录组比较,确定了产谷氨酸棒杆菌的基因表达变化。在温度变化诱导谷氨酸产生的过程中,谷氨酸棒杆菌2262菌株的NCgl2816和NCgl2817基因的mRNA水平显著高于其不产谷氨酸的衍生物2262NP。逆转录PCR分析表明,这两个基因共同构成一个操纵子。NCgl2816推测编码一种乳酸通透酶,而NCgl2817被证明编码醌依赖性L-乳酸脱氢酶,命名为LldD。谷氨酸棒杆菌LldD对底物L-乳酸表现出米氏动力学,K(m)约为0.51 mM。LldD的比活性在以L-乳酸或L-乳酸-葡萄糖混合物为碳源生长时比以葡萄糖、D-乳酸或丙酮酸为碳源生长时高约10倍,而醌依赖性D-乳酸脱氢酶的比活性随碳源变化不大。在以L-乳酸为碳源生长时,NCgl2816和lldD的RNA水平比以丙酮酸为碳源生长时高约18倍。NCgl2816-lldD操纵子的破坏导致失去利用L-乳酸作为唯一碳源的能力。lldD的表达恢复了L-乳酸的利用,表明通透酶基因NCgl2816的功能对于谷氨酸棒杆菌在L-乳酸上生长是可有可无的,而LldD是必不可少的。

相似文献

2
Regulation of L-lactate utilization by the FadR-type regulator LldR of Corynebacterium glutamicum.
J Bacteriol. 2008 Feb;190(3):963-71. doi: 10.1128/JB.01147-07. Epub 2007 Nov 26.
7
Reducing lactate secretion by ldhA Deletion in L-glutamate- producing strain Corynebacterium glutamicum GDK-9.
Braz J Microbiol. 2015 Mar 4;45(4):1477-83. doi: 10.1590/s1517-83822014000400044. eCollection 2014.
10
Systematic pathway engineering of Corynebacterium glutamicum S9114 for L-ornithine production.
Microb Cell Fact. 2017 Sep 22;16(1):158. doi: 10.1186/s12934-017-0776-8.

引用本文的文献

1
Novel tools for genomic modification and heterologous gene expression in the phylum Planctomycetota.
Appl Microbiol Biotechnol. 2025 Mar 31;109(1):79. doi: 10.1007/s00253-025-13462-w.
2
Sustainable production of the drug precursor tyramine by engineered Corynebacterium glutamicum.
Appl Microbiol Biotechnol. 2024 Oct 30;108(1):499. doi: 10.1007/s00253-024-13319-8.
3
Review of the Proteomics and Metabolic Properties of .
Microorganisms. 2024 Aug 15;12(8):1681. doi: 10.3390/microorganisms12081681.
4
Utilization of orange peel waste for sustainable amino acid production by .
Front Bioeng Biotechnol. 2024 Jul 10;12:1419444. doi: 10.3389/fbioe.2024.1419444. eCollection 2024.
6
Temperature influences commensal-pathogen dynamics in a nasal epithelial cell co-culture model.
mSphere. 2024 Jan 30;9(1):e0058923. doi: 10.1128/msphere.00589-23. Epub 2024 Jan 5.
10
Rational Engineering of Non-Ubiquinone Containing for Enhanced Coenzyme Q Production.
Metabolites. 2022 May 11;12(5):428. doi: 10.3390/metabo12050428.

本文引用的文献

2
Response of the central metabolism of Corynebacterium glutamicum to different flux burdens.
Biotechnol Bioeng. 1997 Oct 20;56(2):168-80. doi: 10.1002/(SICI)1097-0290(19971020)56:2<168::AID-BIT6>3.0.CO;2-N.
5
6
Mapping the membrane proteome of Corynebacterium glutamicum.
Proteomics. 2005 Apr;5(5):1317-30. doi: 10.1002/pmic.200400993.
7
Effect of NADH dehydrogenase-disruption and over-expression on respiration-related metabolism in Corynebacterium glutamicum KY9714.
Appl Microbiol Biotechnol. 2004 Dec;66(2):187-93. doi: 10.1007/s00253-004-1659-6. Epub 2004 Jul 29.
8
Identification of AcnR, a TetR-type repressor of the aconitase gene acn in Corynebacterium glutamicum.
J Biol Chem. 2005 Jan 7;280(1):585-95. doi: 10.1074/jbc.M408271200. Epub 2004 Oct 19.
10
Genomewide expression analysis in amino acid-producing bacteria using DNA microarrays.
Appl Biochem Biotechnol. 2004 Jul-Sep;118(1-3):215-32. doi: 10.1385/abab:118:1-3:215.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验