Suppr超能文献

大气科学。集合方法进行天气预报。

Atmospheric science. Weather forecasting with ensemble methods.

作者信息

Gneiting Tilmann, Raftery Adrian E

机构信息

Department of Statistics, University of Washington, Box 354322, Seattle, WA 98195, USA.

出版信息

Science. 2005 Oct 14;310(5746):248-9. doi: 10.1126/science.1115255.

Abstract

Traditional weather forecasting has been built on a foundation of deterministic modeling--start with initial conditions, put them into a supercomputer model, and end up with a prediction about future weather. But as Gneiting and Raftery discuss in their Perspective, a new approach--ensemble forecasting--was introduced in the early 1990s. In this method, up to 100 different computer runs, each with slightly different starting conditions or model assumptions, are combined into a weather forecast. In concert with statistical techniques, ensembles can provide accurate statements about the uncertainty in daily and seasonal forecasting. The challenge now is to improve the modeling, statistical analysis, and visualization technologies for disseminating the ensemble results.

摘要

传统的天气预报建立在确定性建模的基础之上——从初始条件开始,将其输入超级计算机模型,最终得出对未来天气的预测。但正如格奈廷和拉夫蒂在他们的《观点》文章中所讨论的,一种新方法——集合预报——在20世纪90年代初被引入。在这种方法中,多达100次不同的计算机运行,每次运行的起始条件或模型假设略有不同,被组合成一个天气预报。与统计技术相结合,集合预报可以提供关于每日和季节性预报不确定性的准确表述。现在面临的挑战是改进用于传播集合预报结果的建模、统计分析和可视化技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验