Cígler Petr, Kozísek Milan, Rezácová Pavlína, Brynda Jírí, Otwinowski Zbyszek, Pokorná Jana, Plesek Jaromír, Grüner Bohumír, Dolecková-Maresová Lucie, Mása Martin, Sedlácek Juraj, Bodem Jochen, Kräusslich Hans-Georg, Král Vladimír, Konvalinka Jan
Institutes of Organic Chemistry and Biochemistry and Molecular Genetics, Academy of Sciences of the Czech Republic, Flemingovo námestí 2, 166 10 Prague 6, Czech Republic.
Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15394-9. doi: 10.1073/pnas.0507577102. Epub 2005 Oct 14.
HIV protease (PR) represents a prime target for rational drug design, and protease inhibitors (PI) are powerful antiviral drugs. Most of the current PIs are pseudopeptide compounds with limited bioavailability and stability, and their use is compromised by high costs, side effects, and development of resistant strains. In our search for novel PI structures, we have identified a group of inorganic compounds, icosahedral metallacarboranes, as candidates for a novel class of nonpeptidic PIs. Here, we report the potent, specific, and selective competitive inhibition of HIV PR by substituted metallacarboranes. The most active compound, sodium hydrogen butylimino bis-8,8-[5-(3-oxa-pentoxy)-3-cobalt bis(1,2-dicarbollide)]di-ate, exhibited a K(i) value of 2.2 nM and a submicromolar EC(50) in antiviral tests, showed no toxicity in tissue culture, weakly inhibited human cathepsin D and pepsin, and was inactive against trypsin, papain, and amylase. The structure of the parent cobalt bis(1,2-dicarbollide) in complex with HIV PR was determined at 2.15 A resolution by protein crystallography and represents the first carborane-protein complex structure determined. It shows the following mode of PR inhibition: two molecules of the parent compound bind to the hydrophobic pockets in the flap-proximal region of the S3 and S3' subsites of PR. We suggest, therefore, that these compounds block flap closure in addition to filling the corresponding binding pockets as conventional PIs. This type of binding and inhibition, chemical and biological stability, low toxicity, and the possibility to introduce various modifications make boron clusters attractive pharmacophores for potent and specific enzyme inhibition.
HIV蛋白酶(PR)是合理药物设计的主要靶点,蛋白酶抑制剂(PI)是强大的抗病毒药物。当前大多数PI是生物利用度和稳定性有限的假肽化合物,其应用受到高成本、副作用和耐药菌株产生的影响。在寻找新型PI结构的过程中,我们鉴定出一组无机化合物——二十面体金属碳硼烷,作为新型非肽类PI的候选物。在此,我们报告了取代金属碳硼烷对HIV PR的强效、特异性和选择性竞争性抑制作用。活性最强的化合物,丁基亚氨基双-8,8-[5-(3-氧杂-戊氧基)-3-钴双(1,2-二碳硼烷)]二钠,在抗病毒试验中表现出2.2 nM的K(i)值和亚微摩尔的EC(50),在组织培养中无毒性,对人组织蛋白酶D和胃蛋白酶有微弱抑制作用,对胰蛋白酶、木瓜蛋白酶和淀粉酶无活性。通过蛋白质晶体学在2.15 Å分辨率下确定了与HIV PR复合的母体钴双(1,2-二碳硼烷)的结构,这是确定的首个碳硼烷-蛋白质复合结构。它显示出以下PR抑制模式:母体化合物的两个分子结合到PR的S3和S3'亚位点的瓣近端区域的疏水口袋中。因此,我们认为这些化合物除了像传统PI那样填充相应的结合口袋外,还会阻止瓣的闭合。这种结合和抑制类型、化学和生物稳定性、低毒性以及引入各种修饰的可能性,使得硼簇成为用于强效和特异性酶抑制的有吸引力的药效基团。