Wegrzyn R D, Deuerling E
Zentrum für Molekulare Biologie, Universität Heidelberg, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany.
Cell Mol Life Sci. 2005 Dec;62(23):2727-38. doi: 10.1007/s00018-005-5292-z.
A central dogma in biology is the conversion of genetic information into active proteins. The biosynthesis of proteins by ribosomes and the subsequent folding of newly made proteins represent the last crucial steps in this process. To guarantee the correct folding of newly made proteins, a complex chaperone network is required in all cells. In concert with ongoing protein biosynthesis, ribosome-associated factors can interact directly with emerging nascent polypeptides to protect them from degradation or aggregation, to promote folding into their native structure, or to otherwise contribute to their folding program. Eukaryotic cells possess two major ribosome-associated systems, an Hsp70/Hsp40-based chaperone system and the functionally enigmatic NAC complex, whereas prokaryotes employ the Trigger Factor chaperone. Recent structural insights into Trigger Factor reveal an intricate cradle-like structure that, together with the exit site of the ribosome, forms a protected environment for the folding of newly synthesized proteins.
生物学中的一个中心法则是将遗传信息转化为活性蛋白质。核糖体进行蛋白质生物合成以及新合成蛋白质随后的折叠是这一过程中的最后关键步骤。为确保新合成蛋白质的正确折叠,所有细胞都需要一个复杂的伴侣蛋白网络。与正在进行的蛋白质生物合成协同作用,核糖体相关因子可直接与新出现的新生多肽相互作用,以保护它们不被降解或聚集,促进其折叠成天然结构,或以其他方式促进其折叠程序。真核细胞拥有两个主要的核糖体相关系统,一个基于Hsp70/Hsp40的伴侣蛋白系统和功能神秘的NAC复合物,而原核生物则利用触发因子伴侣蛋白。最近对触发因子的结构研究揭示了一种复杂的摇篮状结构,该结构与核糖体的出口位点一起,为新合成蛋白质的折叠形成了一个受保护的环境。