Suppr超能文献

用于计算机辅助发现抗癌化合物的随机熵定量构效关系:新型嘌呤碳环核苷的预测、合成及体外测定

Stochastic entropy QSAR for the in silico discovery of anticancer compounds: prediction, synthesis, and in vitro assay of new purine carbanucleosides.

作者信息

González-Díaz Humberto, Viña Dolores, Santana Lourdes, de Clercq Erik, Uriarte Eugenio

机构信息

Department of Drug Design, Chemical Bioactives Center, Central University of Las Villas, Villa Clara, Cuba.

出版信息

Bioorg Med Chem. 2006 Feb 15;14(4):1095-107. doi: 10.1016/j.bmc.2005.09.039. Epub 2005 Oct 25.

Abstract

A Markov model based QSAR is introduced for the rational selection of anticancer compounds. The model discriminates 90.3% of 226 structurally heterogeneous anticancer/non-anticancer compounds in training series. External validation series were used to validate the model; the 91.8% containing 85 compounds, not considered to fit the model, were correctly classified. The model developed is afterwards used in a simulation of a virtual search for anticancer compounds never considered either in training or in predicting series. The 87.7% of the 213 anticancer compounds used in this simulated search were correctly classified. The model also shows high values for specificity (0.89), sensitivity (0.91), and Mathews correlation coefficient (0.79). In addition, the present model compares better-to-similar with respect to other four models elsewhere reported if one takes into consideration 26 comparison parameters. Finally, we exemplify the use of the model in practice with the design of a new series of carbanucleosides. The compounds evaluated with the model were synthesized and experimentally assayed for their antitumor effects on the proliferation of murine leukemia cells (L1210/0) and human T-lymphocyte cells (CEM/0 and Molt4/C8). The more interesting activity was detected for the compound 5a with a predicted probability of 80.2% and IC(50) = 27.0, 27.2, and 29.4 microM, respectively, against the above-mentioned cellular lines. These values are comparable to those for the control compound Ara-A.

摘要

引入了一种基于马尔可夫模型的定量构效关系(QSAR)来合理选择抗癌化合物。该模型在训练集中对226种结构各异的抗癌/非抗癌化合物的判别准确率为90.3%。使用外部验证集对模型进行验证;包含85种未被认为适合该模型的化合物的验证集中,91.8%被正确分类。随后,所开发的模型被用于模拟虚拟搜索在训练集或预测集中从未考虑过的抗癌化合物。在这次模拟搜索中使用的213种抗癌化合物中,87.7%被正确分类。该模型还显示出高特异性(0.89)、高灵敏度(0.91)和马修斯相关系数(0.79)。此外,如果考虑26个比较参数,本模型与其他地方报道的其他四个模型相比表现更好。最后,我们通过设计一系列新的碳环核苷来举例说明该模型在实际中的应用。用该模型评估的化合物被合成,并对其对小鼠白血病细胞(L1210/0)和人T淋巴细胞(CEM/0和Molt4/C8)增殖的抗肿瘤作用进行了实验测定。化合物5a表现出更有趣的活性,对上述细胞系的预测概率为80.2%,IC(50)分别为27.0、27.2和29.4 microM。这些值与对照化合物阿糖腺苷的值相当。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验