Suppr超能文献

新型药物化合物的定量风险建模

Quantitative risk modelling for new pharmaceutical compounds.

作者信息

Tang Zhengru, Taylor Mark J, Lisboa Paulo, Dyas Mark

机构信息

School of Computing and Mathematical Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK.

出版信息

Drug Discov Today. 2005 Nov 15;10(22):1520-6. doi: 10.1016/S1359-6446(05)03606-8.

Abstract

The process of discovering and developing new drugs is long, costly and risk-laden. Faced with a wealth of newly discovered compounds, industrial scientists need to target resources carefully to discern the key attributes of a drug candidate and to make informed decisions. Here, we describe a quantitative approach to modelling the risk associated with drug development as a tool for scenario analysis concerning the probability of success of a compound as a potential pharmaceutical agent. We bring together the three strands of manufacture, clinical effectiveness and financial returns. This approach involves the application of a Bayesian Network. A simulation model is demonstrated with an implementation in MS Excel using the modelling engine Crystal Ball.

摘要

发现和开发新药的过程漫长、成本高昂且充满风险。面对大量新发现的化合物,产业科学家需要谨慎地分配资源,以识别候选药物的关键特性并做出明智的决策。在此,我们描述一种量化方法,将与药物开发相关的风险建模,作为一种情景分析工具,用于评估一种化合物作为潜在药物成功的概率。我们将生产、临床疗效和财务回报这三个方面结合起来。这种方法涉及贝叶斯网络的应用。通过使用建模引擎Crystal Ball在MS Excel中进行模拟实现,展示了一个模拟模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验