Suppr超能文献

莱茵衣藻光系统I反应中心的超快瞬态吸收研究。2:P700反应中心叶绿素附近的突变对原初电子供体的性质提供了新见解。

Ultrafast transient absorption studies on photosystem I reaction centers from Chlamydomonas reinhardtii. 2: mutations near the P700 reaction center chlorophylls provide new insight into the nature of the primary electron donor.

作者信息

Holzwarth Alfred R, Müller Marc G, Niklas Jens, Lubitz Wolfgang

机构信息

Max-Planck-Institut für Bioanorganische Chemie, D-45470 Mülheim an der Ruhr, Germany.

出版信息

Biophys J. 2006 Jan 15;90(2):552-65. doi: 10.1529/biophysj.105.059824. Epub 2005 Oct 28.

Abstract

The energy transfer and charge separation kinetics in several core Photosystem I particles of Chlamydomonas reinhardtii with point mutations around the PA and PB reaction center chlorophylls (Chls) have been studied using ultrafast transient absorption spectroscopy in the femtosecond to nanosecond time range to characterize the influence on the early electron transfer processes. The data have been analyzed in terms of kinetic compartment models. The adequate description of the transient absorption kinetics requires three different radical pairs in the time range up to approximately 100 ps. Also a charge recombination process from the first radical pair back to the excited state is present in all the mutants, as already shown previously for the wild-type (Müller, M. G., J. Niklas, W. Lubitz, and A. R. Holzwarth. 2003. Biophys. J. 85:3899-3922; and Holzwarth, A. R., M. G. Müller, J. Niklas, and W. Lubitz. 2005. J. Phys. Chem. B. 109:5903-59115). In all mutants, the primary charge separation occurs with the same effective rate constant within the error limits as in the wild-type (>>350 ns(-1)), which implies an intrinsic rate constant of charge separation of <1 ps(-1). The rate constant of the secondary electron transfer process is slowed down by a factor of approximately 2 in the mutant B-H656C, which lacks the ligand to the central metal of Chl PB. For the mutant A-T739V, which breaks the hydrogen bond to the keto carbonyl of Chl PA, only a slight slowing down of the secondary electron transfer is observed. Finally for mutant A-W679A, which has the Trp near the PA Chl replaced, either no pronounced effect or, at best, a slight increase on the secondary electron transfer rate constants is observed. The effective charge recombination rate constant is modified in all mutants to some extent, with the strongest effect observed in mutant B-H656C. Our data strongly suggest that the Chls of the PA and PB pair, constituting what is traditionally called the "primary electron donor P700", are not oxidized in the first electron transfer process, but rather only in the secondary electron transfer step. We thus propose a new electron transfer mechanism for Photosystem I where the accessory Chl(s) function as the primary electron donor(s) and the A0 Chl(s) are the primary electron acceptor(s). This new mechanism also resolves in a straightforward manner the difficulty with the previous mechanism, where an electron would have to overcome a distance of approximately 14 A in <1 ps in a single step. If interpreted within a scheme of single-sided electron transfer, our data suggest that the B-branch is the active branch, although parallel A-branch activity cannot be excluded. All the mutations do affect to a varying extent the energy difference between the reaction center excited state RC* and the first radical pair and thus affect the rate constant of charge recombination. It is interesting to note that the new mechanism proposed is in fact analogous to the electron transfer mechanism in Photosystem II, where the accessory Chl also plays the role of the primary electron donor, rather than the special Chl pair P680 (Prokhorenko, V. and A. R. Holzwarth. 2000. J. Phys. Chem. B. 104:11563-11578).

摘要

利用飞秒至纳秒时间范围内的超快瞬态吸收光谱,研究了莱茵衣藻几个核心光系统I颗粒中的能量转移和电荷分离动力学,这些颗粒在PA和PB反应中心叶绿素(Chls)周围存在点突变,以表征对早期电子转移过程的影响。数据已根据动力学隔室模型进行分析。对瞬态吸收动力学的充分描述需要在高达约100 ps的时间范围内存在三种不同的自由基对。所有突变体中也存在从第一个自由基对回到激发态的电荷复合过程,如先前对野生型所显示的那样(Müller, M. G., J. Niklas, W. Lubitz, and A. R. Holzwarth. 2003. Biophys. J. 85:3899 - 3922; and Holzwarth, A. R., M. G. Müller, J. Niklas, and W. Lubitz. 2005. J. Phys. Chem. B. 109:5903 - 59115)。在所有突变体中,初级电荷分离以与野生型相同的有效速率常数发生,误差范围内(>>350 ns(-1)),这意味着电荷分离的本征速率常数<1 ps(-1)。在缺乏与Chl PB中心金属配位体的突变体B - H656C中,次级电子转移过程的速率常数减慢了约2倍。对于破坏与Chl PA酮羰基氢键的突变体A - T739V,仅观察到次级电子转移略有减慢。最后,对于将PA Chl附近的色氨酸替换的突变体A - W679A,要么未观察到明显影响,要么最多观察到次级电子转移速率常数略有增加。所有突变体中的有效电荷复合速率常数在一定程度上都发生了改变,在突变体B - H656C中观察到的影响最强。我们的数据强烈表明,构成传统上称为“初级电子供体P700”的PA和PB对的Chls在第一个电子转移过程中未被氧化,而是仅在次级电子转移步骤中被氧化。因此,我们提出了一种新的数据强烈表明,构成传统上称为“初级电子供体P700”的PA和PB对的Chls在第一个电子转移过程中未被氧化,而是仅在次级电子转移步骤中被氧化。因此,我们提出了一种新的光系统I电子转移机制,其中辅助Chl作为初级电子供体,A0 Chl作为初级电子受体。这种新机制还以直接的方式解决了先前机制中的困难,在先前机制中,电子必须在<1 ps的单一步骤中克服约14 Å的距离。如果在单侧电子转移方案中进行解释,我们的数据表明B分支是活性分支,尽管不能排除平行的A分支活性。所有突变确实在不同程度上影响反应中心激发态RC*与第一个自由基对之间的能量差,从而影响电荷复合的速率常数。有趣的是,所提出的新机制实际上类似于光系统II中的电子转移机制,其中辅助Chl也起着初级电子供体的作用,而不是特殊的Chl对P680(Prokhorenko, V. and A. R. Holzwarth. 2000. J. Phys. Chem. B. 104:11563 - 11578)。

相似文献

5
Mutation of the putative hydrogen-bond donor to P700 of photosystem I.
Biochemistry. 2004 Oct 5;43(39):12634-47. doi: 10.1021/bi036329p.
7
Charge recombination fluorescence in photosystem I reaction centers from Chlamydomonas reinhardtii.
J Phys Chem B. 2005 Mar 31;109(12):5903-11. doi: 10.1021/jp046299f.
8
9
Functional asymmetry of photosystem II D1 and D2 peripheral chlorophyll mutants of Chlamydomonas reinhardtii.
Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):4091-6. doi: 10.1073/pnas.062056899.
10
Modulating the redox potential of the stable electron acceptor, Q(B), in mutagenized photosystem II reaction centers.
Biochemistry. 2011 Mar 8;50(9):1454-64. doi: 10.1021/bi1017649. Epub 2011 Feb 10.

引用本文的文献

3
Influence of structural colour on the photoprotective mechanism in the gametophyte phase of the red alga .
J R Soc Interface. 2024 Feb;21(211):20230676. doi: 10.1098/rsif.2023.0676. Epub 2024 Feb 21.
4
Energy transfer and trapping in photosystem I with and without chlorophyll-.
iScience. 2023 Aug 15;26(9):107650. doi: 10.1016/j.isci.2023.107650. eCollection 2023 Sep 15.
6
Current state of the primary charge separation mechanism in photosystem I of cyanobacteria.
Biophys Rev. 2022 Aug 15;14(4):805-820. doi: 10.1007/s12551-022-00983-1. eCollection 2022 Aug.
7
Open hardware microsecond dispersive transient absorption spectrometer for linear optical response.
Photochem Photobiol Sci. 2022 Jan;21(1):23-35. doi: 10.1007/s43630-021-00127-6. Epub 2021 Nov 8.
8
Shedding Light on Primary Donors in Photosynthetic Reaction Centers.
Front Microbiol. 2021 Oct 1;12:735666. doi: 10.3389/fmicb.2021.735666. eCollection 2021.
9
A dimeric chlorophyll electron acceptor differentiates type I from type II photosynthetic reaction centers.
iScience. 2021 Jun 11;24(7):102719. doi: 10.1016/j.isci.2021.102719. eCollection 2021 Jul 23.
10
Photosynthetic Light-Harvesting (Antenna) Complexes-Structures and Functions.
Molecules. 2021 Jun 3;26(11):3378. doi: 10.3390/molecules26113378.

本文引用的文献

2
Charge recombination fluorescence in photosystem I reaction centers from Chlamydomonas reinhardtii.
J Phys Chem B. 2005 Mar 31;109(12):5903-11. doi: 10.1021/jp046299f.
3
Excitation energy transfer in Photosystem I from oxygenic organisms.
Photosynth Res. 2001;70(2):129-53. doi: 10.1023/A:1017909325669.
8
Crystal structure of plant photosystem I.
Nature. 2003 Dec 11;426(6967):630-5. doi: 10.1038/nature02200.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验