Maio Vittorio, Yuen Elaine, Rabinowitz Carol, Louis Daniel, Jimbo Masahito, Donatini Andrea, Mall Sabine, Taroni Francesco
Department of Health Policy, Jefferson Medical College, Philadelphia 19107, USA.
J Health Serv Res Policy. 2005 Oct;10(4):232-8. doi: 10.1258/135581905774414259.
Automated pharmacy data have been used to develop a measure of chronic disease status in the general population. The objectives of this project were to refine and apply a model of chronic disease identification using Italian automated pharmacy data; to describe how this model may identify patterns of morbidity in Emilia Romagna, a large Italian region; and to compare estimated prevalence rates using pharmacy data with those available from a 2000 Emilia Romagna disease surveillance study.
Using the Chronic Disease Score, a list of chronic conditions related to the consumption of drugs under the Italian pharmaceutical dispensing system was created. Clinical review identified medication classes within the Italian National Therapeutic Formulary that were linked to the management of each chronic condition. Algorithms were then tested on pharmaceutical claims data from Emilia Romagna for 2001 to verify the applicability of the classification scheme.
Thirty-one chronic condition drug groups (CCDGs) were identified. Applying the model to the pharmacy data, approximately 1.5 million individuals (37.1%) of the population were identified as having one or more of the 31 CCDGs. The 31 CCDGs accounted for 77% (E556 million) of 2001 pharmaceutical expenditures. Cardiovascular diseases, rheumatological conditions, chronic respiratory illness, gastrointestinal diseases and psychiatric diseases were the most frequent chronic conditions. External validation comparing rates of the diseases found through using pharmacy data with those of a 2000 Emilia Romagna disease surveillance study showed similar prevalence of illness.
Using Italian automated pharmacy data, a measure of population-based chronic disease status was developed. Applying the model to pharmaceutical claims from Emilia Romagna 2001, a large proportion of the population was identified as having chronic conditions. Pharmacy data may be a valuable alternative to survey data to assess the extent to which large populations are affected by chronic conditions.
自动化药房数据已被用于制定普通人群慢性病状况的衡量指标。本项目的目的是完善并应用一种利用意大利自动化药房数据进行慢性病识别的模型;描述该模型如何识别意大利大区艾米利亚 - 罗马涅的发病模式;并将利用药房数据估算的患病率与2000年艾米利亚 - 罗马涅疾病监测研究中的数据进行比较。
利用慢性病评分,创建了一份与意大利药品配给系统下药物消费相关的慢性病清单。临床审查确定了意大利国家治疗处方集内与每种慢性病管理相关的药物类别。然后对艾米利亚 - 罗马涅2001年的药品报销数据进行算法测试,以验证分类方案的适用性。
确定了31个慢性病药物组(CCDGs)。将该模型应用于药房数据,约150万人(占人口的37.1%)被确定患有31个CCDGs中的一种或多种。31个CCDGs占2001年药品支出的77%(5.56亿欧元)。心血管疾病、风湿性疾病、慢性呼吸道疾病、胃肠道疾病和精神疾病是最常见的慢性病。通过使用药房数据发现的疾病发病率与2000年艾米利亚 - 罗马涅疾病监测研究的发病率进行外部验证,结果显示患病率相似。
利用意大利自动化药房数据,制定了一种基于人群的慢性病状况衡量指标。将该模型应用于艾米利亚 - 罗马涅2001年的药品报销数据,发现很大一部分人口患有慢性病。药房数据可能是调查数据的一种有价值的替代方法,可用于评估大量人群受慢性病影响的程度。