Suppr超能文献

两种冰下环境微生物群落组成的比较揭示了微生物在化学风化过程中可能发挥的作用。

Comparison of microbial community compositions of two subglacial environments reveals a possible role for microbes in chemical weathering processes.

作者信息

Skidmore Mark, Anderson Suzanne P, Sharp Martin, Foght Julia, Lanoil Brian D

机构信息

Department of Environmental Sciences, 2217 Geology Building, University of California, Riverside, CA 92521, USA.

出版信息

Appl Environ Microbiol. 2005 Nov;71(11):6986-97. doi: 10.1128/AEM.71.11.6986-6997.2005.

Abstract

Viable microbes have been detected beneath several geographically distant glaciers underlain by different lithologies, but comparisons of their microbial communities have not previously been made. This study compared the microbial community compositions of samples from two glaciers overlying differing bedrock. Bulk meltwater chemistry indicates that sulfide oxidation and carbonate dissolution account for 90% of the solute flux from Bench Glacier, Alaska, whereas gypsum/anhydrite and carbonate dissolution accounts for the majority of the flux from John Evans Glacier, Ellesmere Island, Nunavut, Canada. The microbial communities were examined using two techniques: clone libraries and dot blot hybridization of 16S rRNA genes. Two hundred twenty-seven clones containing amplified 16S rRNA genes were prepared from subglacial samples, and the gene sequences were analyzed phylogenetically. Although some phylogenetic groups, including the Betaproteobacteria, were abundant in clone libraries from both glaciers, other well-represented groups were found at only one glacier. Group-specific oligonucleotide probes were developed for two phylogenetic clusters that were of particular interest because of their abundance or inferred biochemical capabilities. These probes were used in quantitative dot blot hybridization assays with a range of samples from the two glaciers. In addition to shared phyla at both glaciers, each glacier also harbored a subglacial microbial population that correlated with the observed aqueous geochemistry. These results are consistent with the hypothesis that microbial activity is an important contributor to the solute flux from glaciers.

摘要

在由不同岩性构成的、地理位置相隔甚远的数条冰川之下,已检测到有存活的微生物,但此前尚未对它们的微生物群落进行比较。本研究比较了来自两座覆盖不同基岩的冰川的样本的微生物群落组成。总体融水化学分析表明,硫化物氧化和碳酸盐溶解占阿拉斯加本奇冰川溶质通量的90%,而石膏/硬石膏和碳酸盐溶解则占加拿大努纳武特地区埃尔斯米尔岛约翰·埃文斯冰川通量的大部分。使用两种技术对微生物群落进行了检测:克隆文库和16S rRNA基因的斑点杂交。从冰下样本中制备了227个含有扩增16S rRNA基因的克隆,并对基因序列进行了系统发育分析。尽管包括β-变形菌纲在内的一些系统发育类群在两座冰川的克隆文库中都很丰富,但其他有代表性的类群仅在一座冰川中被发现。针对两个因其丰度或推测的生化能力而特别受关注的系统发育簇,开发了组特异性寡核苷酸探针。这些探针用于对来自两座冰川的一系列样本进行定量斑点杂交分析。除了两座冰川共有的门类外,每座冰川还拥有一个与观测到的水体地球化学相关的冰下微生物种群。这些结果与以下假设一致,即微生物活动是冰川溶质通量的重要贡献因素。

相似文献

2
Culturable bacteria in subglacial sediments and ice from two Southern Hemisphere glaciers.
Microb Ecol. 2004 May;47(4):329-40. doi: 10.1007/s00248-003-1036-5. Epub 2004 Mar 4.
3
Cultivation-independent and -dependent characterization of Bacteria resident beneath John Evans Glacier.
FEMS Microbiol Ecol. 2007 Feb;59(2):318-30. doi: 10.1111/j.1574-6941.2006.00267.x.
4
Distinct bacterial communities exist beneath a high Arctic polythermal glacier.
Appl Environ Microbiol. 2006 Sep;72(9):5838-45. doi: 10.1128/AEM.00595-06.
5
Metagenomic analysis of basal ice from an Alaskan glacier.
Microbiome. 2018 Jul 5;6(1):123. doi: 10.1186/s40168-018-0505-5.
7
Enrichment of Cryoconite Hole Anaerobes: Implications for the Subglacial Microbiome.
Microb Ecol. 2017 Apr;73(3):532-538. doi: 10.1007/s00248-016-0886-6. Epub 2016 Nov 7.
8
Subglacial Lake Whillans microbial biogeochemistry: a synthesis of current knowledge.
Philos Trans A Math Phys Eng Sci. 2016 Jan 28;374(2059). doi: 10.1098/rsta.2014.0290.
9
Chemolithotrophic primary production in a subglacial ecosystem.
Appl Environ Microbiol. 2014 Oct;80(19):6146-53. doi: 10.1128/AEM.01956-14. Epub 2014 Aug 1.

引用本文的文献

1
Microbial genetic potential differs among cryospheric habitats of the Damma glacier.
Microb Genom. 2024 Oct;10(10). doi: 10.1099/mgen.0.001301.
2
Exploring bacterial diversity in Arctic fjord sediments: a 16S rRNA-based metabarcoding portrait.
Braz J Microbiol. 2024 Mar;55(1):499-513. doi: 10.1007/s42770-023-01217-6. Epub 2024 Jan 4.
3
Effects of nutrient injection on the Xinjiang oil field microbial community studied in a long core flooding simulation device.
Front Microbiol. 2023 Oct 12;14:1230274. doi: 10.3389/fmicb.2023.1230274. eCollection 2023.
4
Glacial Water: A Dynamic Microbial Medium.
Microorganisms. 2023 Apr 28;11(5):1153. doi: 10.3390/microorganisms11051153.
6
A microbial driver of clay mineral weathering and bioavailable Fe source under low-temperature conditions.
Front Microbiol. 2022 Aug 22;13:980078. doi: 10.3389/fmicb.2022.980078. eCollection 2022.
9
Perspectives for using glacial and periglacial microorganisms for plant growth promotion at low temperatures.
Appl Microbiol Biotechnol. 2020 Apr;104(8):3267-3278. doi: 10.1007/s00253-020-10468-4. Epub 2020 Feb 19.
10
Diversity and abundance of microbial eukaryotes in stream sediments from Svalbard.
Polar Biol. 2017;40(9):1835-1843. doi: 10.1007/s00300-017-2106-3. Epub 2017 Mar 31.

本文引用的文献

1
Bacterial diversity in aquatic and other environments: what 16S rDNA libraries can tell us.
FEMS Microbiol Ecol. 2004 Feb 1;47(2):161-77. doi: 10.1016/S0168-6496(03)00257-5.
2
The ecology of Cytophaga-Flavobacteria in aquatic environments.
FEMS Microbiol Ecol. 2002 Feb 1;39(2):91-100. doi: 10.1111/j.1574-6941.2002.tb00910.x.
3
Microbial community succession in an unvegetated, recently deglaciated soil.
Microb Ecol. 2007 Jan;53(1):110-22. doi: 10.1007/s00248-006-9144-7. Epub 2006 Dec 22.
4
A viable microbial community in a subglacial volcanic crater lake, Iceland.
Astrobiology. 2004 Fall;4(3):327-44. doi: 10.1089/ast.2004.4.327.
5
Temperature dependence of metabolic rates for microbial growth, maintenance, and survival.
Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4631-6. doi: 10.1073/pnas.0400522101.
6
Culturable bacteria in subglacial sediments and ice from two Southern Hemisphere glaciers.
Microb Ecol. 2004 May;47(4):329-40. doi: 10.1007/s00248-003-1036-5. Epub 2004 Mar 4.
7
ARB: a software environment for sequence data.
Nucleic Acids Res. 2004 Feb 25;32(4):1363-71. doi: 10.1093/nar/gkh293. Print 2004.
8
Phylogenetic analysis of anaerobic psychrophilic enrichment cultures obtained from a greenland glacier ice core.
Appl Environ Microbiol. 2003 Apr;69(4):2153-60. doi: 10.1128/AEM.69.4.2153-2160.2003.
9
Incorporation of DNA and protein precursors into macromolecules by bacteria at -15 degrees C.
Appl Environ Microbiol. 2002 Dec;68(12):6435-8. doi: 10.1128/AEM.68.12.6435-6438.2002.
10
Origin and Phylogeny of Microbes Living in Permanent Antarctic Lake Ice.
Microb Ecol. 2000 Apr;39(3):197-202. doi: 10.1007/s002480000016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验