Camacho Alberto, Massieu Lourdes
Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico, D.F., Mexico.
Arch Med Res. 2006 Jan;37(1):11-8. doi: 10.1016/j.arcmed.2005.05.014.
Glutamate neurotransmitter action on postsynaptic receptors is terminated by its clearance from the synaptic cleft by transporter proteins located in neurons and glial cells. Failure of glutamate removal can lead to neuronal death due to its well-known neurotoxic properties. Glutamate transporters are dependent on external Na+, and thus on the activity of Na+/K+ ATPases, which maintain the Na+ concentration gradient. When the energy brain requirements are not fulfilled by the appropriate blood supply of glucose and oxygen, the Na+ gradient collapses leading to impaired glutamate and aspartate removal, or even to the release of these amino acids through the reverse operation of their transporters. Such a scenario would be associated with brain ischemia and hypoglycemia due to the prompt decline in ATP levels. In addition, some evidence suggests that downregulation of glutamate transporters after the ischemic period, or the dysfunction induced by oxidation, contributes to the accumulation of extracellular glutamate and neuronal death. Neuronal damage is associated with excitotoxicity, a type of cell death triggered by the overactivation of glutamate receptors and the loss of calcium homeostasis. Throughout this review we will discuss recent evidence suggesting that failure of glutamate transport during ischemia contributes to the elevation of extracellular glutamate and to the induction of excitotoxicity. We will also discuss the contribution of glial vs. neuronal glutamate transporters in ischemic damage, and the involvement of the different glutamate transporter subtypes. We will focus on experimental data from rodent models, because many of the studies on glutamate transport and ischemic damage have been performed in these animal species.
谷氨酸神经递质作用于突触后受体后,通过位于神经元和神经胶质细胞中的转运蛋白将其从突触间隙清除,从而终止其作用。由于谷氨酸具有众所周知的神经毒性,其清除失败会导致神经元死亡。谷氨酸转运蛋白依赖于细胞外的钠离子,因此也依赖于维持钠离子浓度梯度的钠钾ATP酶的活性。当大脑对能量的需求无法通过适当的葡萄糖和氧气血液供应得到满足时,钠离子梯度就会崩溃,导致谷氨酸和天冬氨酸的清除受损,甚至通过其转运蛋白的反向运作导致这些氨基酸的释放。由于ATP水平迅速下降,这种情况会与脑缺血和低血糖相关。此外,一些证据表明,缺血期后谷氨酸转运蛋白的下调或氧化诱导的功能障碍,会导致细胞外谷氨酸的积累和神经元死亡。神经元损伤与兴奋毒性有关,兴奋毒性是一种由谷氨酸受体过度激活和钙稳态丧失引发的细胞死亡类型。在这篇综述中,我们将讨论最近的证据,这些证据表明缺血期间谷氨酸转运失败会导致细胞外谷氨酸水平升高和兴奋毒性的诱导。我们还将讨论神经胶质细胞与神经元谷氨酸转运蛋白在缺血损伤中的作用,以及不同谷氨酸转运蛋白亚型的参与情况。我们将重点关注啮齿动物模型的实验数据,因为许多关于谷氨酸转运和缺血损伤的研究都是在这些动物物种中进行的。