Bottino Dean, Penland R Christian, stamps Andrew, Traebert Martin, Dumotier Bérengère, Georgiva Anna, Helmlinger Gabriel, Lett G Scott
The BioAnalytics Group LLC, USA.
Prog Biophys Mol Biol. 2006 Jan-Apr;90(1-3):414-43. doi: 10.1016/j.pbiomolbio.2005.06.006.
Blockade of the delayed rectifier potassium channel current, I(Kr), has been associated with drug-induced QT prolongation in the electrocardiogram and life-threatening cardiac arrhythmias. However, it is increasingly clear that compound-induced interactions with multiple cardiac ion channels may significantly affect QT prolongation that would result from inhibition of only I(Kr) [Redfern, W.S., Carlsson, L., et al., 2003. Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: evidence for a provisional safety margin in drug development. Cardiovasc. Res. 58(1), 32-45]. Such an assessment may not be feasible in vitro, due to multi-factorial processes that are also time-dependent and highly non-linear. Limited preclinical data, I(Kr) hERG assay and canine Purkinje fiber (PF) action potentials (APs) [Gintant, G.A., Limberis, J.T., McDermott, J.S., Wegner, C.D., Cox, B.F., 2001. The canine Purkinje fiber: an in vitro model system for acquired long QT syndrome and drug-induced arrhythmogenesis. J. Cardiovasc. Pharmacol. 37(5), 607-618], were used for two test compounds in a systems-based modeling platform of cardiac electrophysiology [Muzikant, A.L., Penland, R.C., 2002. Models for profiling the potential QT prolongation risk of drugs. Curr. Opin. Drug. Discov. Dev. 5(1), 127-35] to: (i) convert a canine myocyte model to a PF model by training functional current parameters to the AP data; (ii) reverse engineer the compounds' effects on five channel currents other than I(Kr), predicting significant IC(50) values for I(Na+), sustained and I(Ca2+), L-type , which were subsequently experimentally validated; (iii) use the predicted (I(Na+), sustained and I(Ca2+), L-type) and measured (I(Kr)) IC(50) values to simulate dose-dependent effects of the compounds on APs in endocardial, mid-myocardial, and epicardiac ventricular cells; and (iv) integrate the three types of cellular responses into a tissue-level spatial model, which quantifiably predicted no potential for the test compounds to induce either QT prolongation or increased transmural dispersion of repolarization in a dose-dependent and reverse rate-dependent fashion, despite their inhibition of I(Kr) in vitro.
延迟整流钾通道电流I(Kr)的阻断与心电图中药物诱导的QT间期延长以及危及生命的心律失常有关。然而,越来越清楚的是,化合物与多个心脏离子通道的相互作用可能会显著影响仅抑制I(Kr)所导致的QT间期延长[Redfern, W.S., Carlsson, L., 等人,2003年。多种药物的临床前心脏电生理学、临床QT间期延长与尖端扭转型室速之间的关系:药物开发中临时安全边际的证据。心血管研究。58(1),32 - 45]。由于多因素过程也是时间依赖性和高度非线性的,这种评估在体外可能不可行。有限的临床前数据、I(Kr)人ether-à-go-go相关基因(hERG)检测和犬浦肯野纤维(PF)动作电位(APs)[Gintant, G.A., Limberis, J.T., McDermott, J.S., Wegner, C.D., Cox, B.F., 2001年。犬浦肯野纤维:获得性长QT综合征和药物诱导心律失常的体外模型系统。心血管药理学杂志。37(5),607 - 618],被用于心脏电生理学的基于系统的建模平台中的两种测试化合物[Muzikant, A.L., Penland, R.C., 2002年。预测药物潜在QT间期延长风险的模型。药物发现与开发的当前观点。5(1),127 - 35],以:(i) 通过将功能电流参数训练到AP数据,将犬心肌细胞模型转换为PF模型;(ii) 逆向工程化合物对除I(Kr)之外的五种通道电流的影响,预测I(Na+)、持续性和I(Ca2+)、L型的显著半数抑制浓度(IC(50))值,随后通过实验进行了验证;(iii) 使用预测的(I(Na+)、持续性和I(Ca2+)、L型)和测量的(I(Kr))IC(50)值来模拟化合物对心内膜、心肌中层和心外膜心室细胞APs的剂量依赖性影响;以及(iv) 将三种类型的细胞反应整合到一个组织水平的空间模型中,该模型定量预测了测试化合物尽管在体外抑制I(Kr),但没有以剂量依赖性和反向频率依赖性方式诱导QT间期延长或增加复极跨壁离散度的可能性。