Rosado-Reyes Claudette M, Francisco Joseph S, Szente Joseph J, Maricq M Matti, Frøsig Østergaard Lars
Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA.
J Phys Chem A. 2005 Dec 8;109(48):10940-53. doi: 10.1021/jp054223t.
Dimethyl ether (DME) has been proposed for use as an alternative fuel or additive in diesel engines and as a potential fuel in solid oxide fuel cells. The oxidation chemistry of DME is a key element in understanding its role in these applications. The reaction between methoxymethyl radicals and O(2) has been examined over the temperature range 295-600 K and at pressures of 20-200 Torr. This reaction has two product pathways. The first produces methoxymethyl peroxy radicals, while the second produces OH radicals and formaldehyde molecules. Real-time kinetic measurements are made by transient infrared spectroscopy to monitor the yield of three main products-formaldehyde, methyl formate, and formic acid-to determine the branching ratio for the CH(3)OCH(2) + O(2) reaction pathways. The temperature and pressure dependence of this reaction is described by a Lindemann and Arrhenius mechanism. The branching ratio is described by f = 1/(1 + A(T)[M]), where A(T) = (1.6(+2.4)(-1.0) x 10(-20)) exp((1800 +/- 400)/T) cm(3) molecule(-1). The temperature dependent rate constant of the methoxymethyl peroxy radical self-reaction is calculated from the kinetics of the formaldehyde and methyl formate product yields, k(4) = (3.0 +/- 2.1) x 10(-13) exp((700 +/- 250)/T) cm(3) molecule(-1) s(-1). The experimental and kinetics modeling results support a strong preference for the thermal decomposition of alkoxy radicals versus their reaction with O(2) under our laboratory conditions. These characteristics of DME oxidation with respect to temperature and pressure might provide insight into optimizing solid oxide fuel cell operating conditions with DME in the presence of O(2) to maximize power outputs.
二甲醚(DME)已被提议用作柴油发动机的替代燃料或添加剂,以及固体氧化物燃料电池的潜在燃料。DME的氧化化学是理解其在这些应用中作用的关键因素。在295 - 600 K的温度范围和20 - 200托的压力下,研究了甲氧基甲基自由基与O₂之间的反应。该反应有两条产物途径。第一条产生甲氧基甲基过氧自由基,而第二条产生OH自由基和甲醛分子。通过瞬态红外光谱进行实时动力学测量,以监测三种主要产物——甲醛、甲酸甲酯和甲酸的产率,从而确定CH₃OCH₂ + O₂反应途径的分支比。该反应的温度和压力依赖性由Lindemann和Arrhenius机理描述。分支比由f = 1/(1 + A(T)[M])描述,其中A(T) = (1.6(+2.4)(-1.0) x 10⁻²⁰) exp((1800 ± 400)/T) cm³ molecule⁻¹。根据甲醛和甲酸甲酯产物产率的动力学计算出甲氧基甲基过氧自由基自反应的温度依赖性速率常数,k₄ = (3.0 ± 2.1) x 10⁻¹³ exp((700 ± 250)/T) cm³ molecule⁻¹ s⁻¹。实验和动力学建模结果表明,在我们的实验室条件下,相对于烷氧基自由基与O₂的反应,烷氧基自由基的热分解具有强烈的偏好性。DME氧化在温度和压力方面的这些特性可能有助于深入了解在O₂存在的情况下,如何优化使用DME的固体氧化物燃料电池的运行条件,以实现功率输出最大化。