Suppr超能文献

拟南芥4号染色体上交叉率的变化揭示了减数分裂重组“热点”的存在。

Variation in crossing-over rates across chromosome 4 of Arabidopsis thaliana reveals the presence of meiotic recombination "hot spots".

作者信息

Drouaud Jan, Camilleri Christine, Bourguignon Pierre-Yves, Canaguier Aurélie, Bérard Aurélie, Vezon Daniel, Giancola Sandra, Brunel Dominique, Colot Vincent, Prum Bernard, Quesneville Hadi, Mézard Christine

机构信息

Station de Génétique et d'Amélioration des Plantes, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, 78026, Versailles cedex, France.

出版信息

Genome Res. 2006 Jan;16(1):106-14. doi: 10.1101/gr.4319006. Epub 2005 Dec 12.

Abstract

Crossover (CO) is a key process for the accurate segregation of homologous chromosomes during the first meiotic division. In most eukaryotes, meiotic recombination is not homogeneous along the chromosomes, suggesting a tight control of the location of recombination events. We genotyped 71 single nucleotide polymorphisms (SNPs) covering the entire chromosome 4 of Arabidopsis thaliana on 702 F2 plants, representing 1404 meioses and allowing the detection of 1171 COs, to study CO localization in a higher plant. The genetic recombination rates varied along the chromosome from 0 cM/Mb near the centromere to 20 cM/Mb on the short arm next to the NOR region, with a chromosome average of 4.6 cM/Mb. Principal component analysis showed that CO rates negatively correlate with the G+C content (P = 3x10(-4)), in contrast to that reported in other eukaryotes. COs also significantly correlate with the density of single repeats and the CpG ratio, but not with genes, pseudogenes, transposable elements, or dispersed repeats. Chromosome 4 has, on average, 1.6 COs per meiosis, and these COs are subjected to interference. A detailed analysis of several regions having high CO rates revealed "hot spots" of meiotic recombination contained in small fragments of a few kilobases. Both the intensity and the density of these hot spots explain the variation of CO rates along the chromosome.

摘要

交换(CO)是第一次减数分裂期间同源染色体精确分离的关键过程。在大多数真核生物中,减数分裂重组在染色体上并非均匀分布,这表明重组事件的位置受到严格控制。我们对702株F2植株的拟南芥第4号染色体上覆盖的71个单核苷酸多态性(SNP)进行了基因分型,代表1404次减数分裂,可检测到1171次交换,以研究高等植物中的交换定位。遗传重组率沿染色体变化,从着丝粒附近的0 cM/Mb到NOR区域旁边短臂上的20 cM/Mb,染色体平均为4.6 cM/Mb。主成分分析表明,与其他真核生物报道的情况相反,交换率与G+C含量呈负相关(P = 3×10⁻⁴)。交换也与单拷贝重复序列的密度和CpG比率显著相关,但与基因、假基因、转座元件或分散重复序列无关。第4号染色体平均每次减数分裂有1.6次交换,并且这些交换受到干扰。对几个具有高交换率区域的详细分析揭示了包含在几千碱基小片段中的减数分裂重组“热点”。这些热点的强度和密度都解释了交换率沿染色体的变化。

相似文献

2
Genome-wide crossover distribution in Arabidopsis thaliana meiosis reveals sex-specific patterns along chromosomes.
PLoS Genet. 2011 Nov;7(11):e1002354. doi: 10.1371/journal.pgen.1002354. Epub 2011 Nov 3.
4
Meiotic recombination hotspots in plants.
Biochem Soc Trans. 2006 Aug;34(Pt 4):531-4. doi: 10.1042/BST0340531.
5
Formation of interference-sensitive meiotic cross-overs requires sufficient DNA leading-strand elongation.
Proc Natl Acad Sci U S A. 2015 Oct 6;112(40):12534-9. doi: 10.1073/pnas.1507165112. Epub 2015 Sep 21.
7
Elevated temperature increases meiotic crossover frequency via the interfering (Type I) pathway in Arabidopsis thaliana.
PLoS Genet. 2018 May 17;14(5):e1007384. doi: 10.1371/journal.pgen.1007384. eCollection 2018 May.
8
Epigenetic remodeling of meiotic crossover frequency in Arabidopsis thaliana DNA methyltransferase mutants.
PLoS Genet. 2012;8(8):e1002844. doi: 10.1371/journal.pgen.1002844. Epub 2012 Aug 2.
9
Characterization of meiotic non-crossover molecules from Arabidopsis thaliana pollen.
Methods Mol Biol. 2013;990:177-90. doi: 10.1007/978-1-62703-333-6_18.
10
The DNA replication factor RFC1 is required for interference-sensitive meiotic crossovers in Arabidopsis thaliana.
PLoS Genet. 2012;8(11):e1003039. doi: 10.1371/journal.pgen.1003039. Epub 2012 Nov 8.

引用本文的文献

1
Genetic dissection of MutL complexes in Arabidopsis meiosis.
Nucleic Acids Res. 2025 Feb 27;53(5). doi: 10.1093/nar/gkaf187.
2
3
Genomic features of meiotic crossovers in diploid potato.
Hortic Res. 2023 Apr 19;10(6):uhad079. doi: 10.1093/hr/uhad079. eCollection 2023 Jun.
4
The chromatin determinants and Ph1 gene effect at wheat sites with contrasting recombination frequency.
J Adv Res. 2023 Nov;53:75-85. doi: 10.1016/j.jare.2023.01.002. Epub 2023 Jan 9.
5
From gene editing to genome engineering: restructuring plant chromosomes via CRISPR/Cas.
aBIOTECH. 2019 Aug 9;1(1):21-31. doi: 10.1007/s42994-019-00002-0. eCollection 2020 Jan.
6
Natural and artificial sources of genetic variation used in crop breeding: A baseline comparator for genome editing.
Front Genome Ed. 2022 Aug 22;4:937853. doi: 10.3389/fgeed.2022.937853. eCollection 2022.
7
Fast and Precise: How to Measure Meiotic Crossovers in .
Mol Cells. 2022 May 31;45(5):273-283. doi: 10.14348/molcells.2022.2054.
8
Meiosis in Polyploids and Implications for Genetic Mapping: A Review.
Genes (Basel). 2021 Sep 27;12(10):1517. doi: 10.3390/genes12101517.
9
A Modified Meiotic Recombination in Largely Improves Its Breeding Efficiency.
Biology (Basel). 2021 Aug 13;10(8):771. doi: 10.3390/biology10080771.
10
Natural variation identifies SNI1, the SMC5/6 component, as a modifier of meiotic crossover in .
Proc Natl Acad Sci U S A. 2021 Aug 17;118(33). doi: 10.1073/pnas.2021970118.

本文引用的文献

1
Combined evidence annotation of transposable elements in genome sequences.
PLoS Comput Biol. 2005 Jul;1(2):166-75. doi: 10.1371/journal.pcbi.0010022. Epub 2005 Jul 29.
2
Human recombination hot spots hidden in regions of strong marker association.
Nat Genet. 2005 Jun;37(6):601-6. doi: 10.1038/ng1565. Epub 2005 May 8.
5
Crossover interference on nucleolus organizing region-bearing chromosomes in Arabidopsis.
Genetics. 2005 Jun;170(2):807-12. doi: 10.1534/genetics.104.040055. Epub 2005 Mar 31.
6
Recombination difference between sexes: a role for haploid selection.
PLoS Biol. 2005 Mar;3(3):e63. doi: 10.1371/journal.pbio.0030063. Epub 2005 Feb 22.
8
Variation in human meiotic recombination.
Annu Rev Genomics Hum Genet. 2004;5:317-49. doi: 10.1146/annurev.genom.4.070802.110217.
9
Does crossover interference count in Saccharomyces cerevisiae?
Genetics. 2004 Sep;168(1):35-48. doi: 10.1534/genetics.104.027789.
10
Role of transposable elements in heterochromatin and epigenetic control.
Nature. 2004 Jul 22;430(6998):471-6. doi: 10.1038/nature02651.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验