School of Oceanography, University of Washington, Seattle, Washington 98195.
Appl Environ Microbiol. 1985 Nov;50(5):1268-73. doi: 10.1128/aem.50.5.1268-1273.1985.
We present evidence that the oxidation of Mn(II) in a zone above the O(2)/H(2)S interface in the water column of Saanich Inlet, British Columbia, Canada, is microbially catalyzed. We measured the uptake of Mn(II) in water samples under in situ conditions of pH and temperature and in the presence and absence of oxygen. Experiments in the absence of oxygen provided a measure of the exchange of the tracer between the dissolved and solid pools of Mn(II); we interpret the difference between experiments in the presence and absence of oxygen to be a measure of Mn(II) oxidation. Using this method we examined the effect of oxygen tension, Mn(II) concentration, and temperature on the initial in situ Mn(II) oxidation rate (V(0)). Mn(II) oxidation was almost twice as fast under conditions of 67% air saturation (V(0)=5.5 nM h) as with the in situ concentration of 15 muM (5% air saturation; V(0)=3.1 nM h). Additions of ca. 18 muM Mn(II) completely inhibited all Mn(II) oxidation at three different depths in the oxidizing zone, and there was a temperature optimum for Mn(II) oxidation of around 20 degrees C. These results are consistent with biologically mediated Mn(II) oxidation and indicate that the rate is limited by both oxygen and the concentration of microbial binding sites in this environment.
我们提出的证据表明,在加拿大不列颠哥伦比亚省萨尼奇湾水层中 O(2)/H(2)S 界面上方区域内,Mn(II)的氧化是微生物催化的。我们测量了在原位 pH 和温度条件下以及在有氧和无氧条件下水样中 Mn(II)的吸收。在无氧实验中,我们测量了示踪剂在溶解态和固态 Mn(II)之间的交换;我们将有氧和无氧实验之间的差异解释为 Mn(II)氧化的度量。使用这种方法,我们研究了氧气张力、Mn(II)浓度和温度对初始原位 Mn(II)氧化速率(V(0))的影响。在 67%空气饱和度(V(0)=5.5 nM h)条件下,Mn(II)氧化的速度比原位浓度为 15 μM(5%空气饱和度;V(0)=3.1 nM h)时快近两倍。在氧化区的三个不同深度添加约 18 μM 的 Mn(II)完全抑制了所有 Mn(II)氧化,Mn(II)氧化的最佳温度约为 20°C。这些结果与生物介导的 Mn(II)氧化一致,并表明该速率受该环境中氧气和微生物结合位点浓度的限制。