Bernard Dominic, Akochy Pierre-Marie, Beaulieu David, Lapointe Jacques, Roy Paul H
Centre de Recherche en Infectiologie, CHU Laval, 2705 Boulevard Laurier, RC-709, Sainte-Foy, Quebec, Canada G1V 4G2.
J Bacteriol. 2006 Jan;188(1):269-74. doi: 10.1128/JB.188.1.269-274.2006.
In many organisms, the formation of asparaginyl-tRNA is not done by direct aminoacylation of tRNA(Asn) but by specific tRNA-dependent transamidation of aspartyl-tRNA(Asn). This transamidation pathway involves a nondiscriminating aspartyl-tRNA synthetase (AspRS) that charges both tRNA(Asp) and tRNA(Asn) with aspartic acid. Recently, it has been shown for the first time in an organism (Pseudomonas aeruginosa PAO1) that the transamidation pathway is the only route of synthesis of Asn-tRNA(Asn) but does not participate in Gln-tRNA(Gln) formation. P. aeruginosa PAO1 has a nondiscriminating AspRS. We report here the identification of two residues in the anticodon recognition domain (H31 and G83) which are implicated in the recognition of tRNA(Asn). Sequence comparisons of putative discriminating and nondiscriminating AspRSs (based on the presence or absence of the AdT operon and of AsnRS) revealed that bacterial nondiscriminating AspRSs possess a histidine at position 31 and usually a glycine at position 83, whereas discriminating AspRSs possess a leucine at position 31 and a residue other than a glycine at position 83. Mutagenesis of these residues of P. aeruginosa AspRS from histidine to leucine and from glycine to lysine increased the specificity of tRNA(Asp) charging over that of tRNA(Asn) by 3.5-fold and 4.2-fold, respectively. Thus, we show these residues to be determinants of the relaxed specificity of this nondiscriminating AspRS. Using available crystallographic data, we found that the H31 residue could interact with the central bases of the anticodons of the tRNA(Asp) and tRNA(Asn). Therefore, these two determinants of specificity of P. aeruginosa AspRS could be important for all bacterial AspRSs.
在许多生物体中,天冬酰胺基 - tRNA的形成并非通过tRNA(Asn)的直接氨酰化作用,而是通过天冬氨酰 - tRNA(Asn)的特定tRNA依赖性转酰胺作用来完成。这种转酰胺途径涉及一种非特异性天冬氨酰 - tRNA合成酶(AspRS),它能将天冬氨酸同时加载到tRNA(Asp)和tRNA(Asn)上。最近,在一种生物体(铜绿假单胞菌PAO1)中首次表明,转酰胺途径是Asn - tRNA(Asn)合成的唯一途径,但不参与Gln - tRNA(Gln)的形成。铜绿假单胞菌PAO1具有一种非特异性AspRS。我们在此报告了在反密码子识别结构域中鉴定出的两个残基(H31和G83),它们与tRNA(Asn)的识别有关。对假定的特异性和非特异性AspRSs进行序列比较(基于AdT操纵子和AsnRS的存在与否)发现,细菌非特异性AspRSs在第31位具有组氨酸,在第83位通常具有甘氨酸,而特异性AspRSs在第31位具有亮氨酸,在第83位具有除甘氨酸以外的其他残基。将铜绿假单胞菌AspRS的这些残基从组氨酸突变为亮氨酸以及从甘氨酸突变为赖氨酸,分别使tRNA(Asp)的氨酰化特异性相对于tRNA(Asn)提高了3.5倍和4.2倍。因此,我们表明这些残基是这种非特异性AspRS宽松特异性的决定因素。利用现有的晶体学数据,我们发现H31残基可以与tRNA(Asp)和tRNA(Asn)反密码子的中央碱基相互作用。因此,铜绿假单胞菌AspRS特异性的这两个决定因素可能对所有细菌AspRSs都很重要。