Gomez Sergio S, Maldonado Alejandro, Aucar Gustavo A
Department of Physics, Natural and Exact Science Faculty, Northeastern University, Avenida Libertad 5500, W 3400 AAS Corrientes, Argentina.
J Chem Phys. 2005 Dec 1;123(21):214108. doi: 10.1063/1.2133729.
In this work an analysis of the electronic origin of relativistic effects on the isotropic dia- and paramagnetic contributions to the nuclear magnetic shielding sigma(X) for noble gases and heavy atoms of hydrogen halides is presented. All results were obtained within the 4-component polarization propagator formalism at different level of approach [random-phase approximation (RPA) and pure zeroth-order approximation (PZOA)], by using a local version of the DIRAC code. From the fact that calculations of diamagnetic contributions to sigma within RPA and PZOA approaches for HX(X=Br,I,At) and rare-gas atoms are quite close each to other and the finding that the diamagnetic part of the principal propagator at the PZOA level can be developed as a series [S(Delta)], it was found that there is a branch of negative-energy "virtual" excitations that contribute with more than 98% of the total diamagnetic value even for the heavier elements, namely, Xe, Rn, I, and At. It contains virtual negative-energy molecular-orbital states with energies between -2 mc2 and -4 mc2. This fact can explain the excellent performance of the linear response elimination of small component (LR-ESC) scheme for elements up to the fifth row in the Periodic Table. An analysis of the convergency of S(Delta) and its physical implications is given. It is also shown that the total contribution to relativistic effects of the innermost orbital (1s1/2) is by far the largest. For the paramagnetic contributions results at the RPA and PZOA approximations are similar only for rare-gas atoms. On the other hand, if the mass-correction contributions to sigma(p) are expressed in terms of atomic orbitals, a different pattern is found for 1s1/2 orbital contributions compared with all other s-type orbitals when the whole set of rare-gas atoms is considered.
本文对相对论效应的电子起源进行了分析,该效应涉及稀有气体以及卤化氢重原子的各向同性抗磁和顺磁贡献对核磁屏蔽σ(X)的影响。所有结果均在四分量极化传播子形式体系内,采用不同的近似水平[随机相位近似(RPA)和纯零阶近似(PZOA)],通过使用DIRAC代码的局部版本获得。基于以下事实:对于HX(X = Br、I、At)和稀有气体原子,在RPA和PZOA近似方法中对σ的抗磁贡献计算结果彼此相当接近,并且发现在PZOA水平下主传播子的抗磁部分可以展开为一个级数[S(Δ)],结果发现存在一个负能量“虚拟”激发分支,即使对于较重的元素,即Xe、Rn、I和At,其对总抗磁值的贡献也超过98%。它包含能量在 -2mc² 和 -4mc² 之间的虚拟负能量分子轨道态。这一事实可以解释线性响应消除小分量(LR - ESC)方案对元素周期表中第五周期及以下元素的出色性能。文中给出了S(Δ)的收敛性分析及其物理意义。还表明最内层轨道(1s1/2)对相对论效应的总贡献迄今为止是最大的。对于顺磁贡献,仅在稀有气体原子的情况下,RPA和PZOA近似的结果相似。另一方面,如果将对σ(p)的质量校正贡献用原子轨道表示,当考虑整个稀有气体原子集时,与所有其他s型轨道相比,1s1/2轨道贡献呈现出不同的模式。