Suppr超能文献

使用支持向量机预测单点突变的蛋白质稳定性变化

Prediction of protein stability changes for single-site mutations using support vector machines.

作者信息

Cheng Jianlin, Randall Arlo, Baldi Pierre

机构信息

Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, California 92697-3425, USA.

出版信息

Proteins. 2006 Mar 1;62(4):1125-32. doi: 10.1002/prot.20810.

Abstract

Accurate prediction of protein stability changes resulting from single amino acid mutations is important for understanding protein structures and designing new proteins. We use support vector machines to predict protein stability changes for single amino acid mutations leveraging both sequence and structural information. We evaluate our approach using cross-validation methods on a large dataset of single amino acid mutations. When only the sign of the stability changes is considered, the predictive method achieves 84% accuracy-a significant improvement over previously published results. Moreover, the experimental results show that the prediction accuracy obtained using sequence alone is close to the accuracy obtained using tertiary structure information. Because our method can accurately predict protein stability changes using primary sequence information only, it is applicable to many situations where the tertiary structure is unknown, overcoming a major limitation of previous methods which require tertiary information. The web server for predictions of protein stability changes upon mutations (MUpro), software, and datasets are available at http://www.igb.uci.edu/servers/servers.html.

摘要

准确预测单个氨基酸突变引起的蛋白质稳定性变化对于理解蛋白质结构和设计新蛋白质至关重要。我们使用支持向量机,利用序列和结构信息来预测单个氨基酸突变导致的蛋白质稳定性变化。我们在一个大型单氨基酸突变数据集上使用交叉验证方法评估我们的方法。当仅考虑稳定性变化的符号时,该预测方法的准确率达到84%,比之前发表的结果有显著提高。此外,实验结果表明,仅使用序列获得的预测准确率接近使用三级结构信息获得的准确率。由于我们的方法仅使用一级序列信息就能准确预测蛋白质稳定性变化,因此它适用于许多三级结构未知的情况,克服了先前需要三级信息的方法的一个主要限制。用于预测突变后蛋白质稳定性变化的网络服务器(MUpro)、软件和数据集可在http://www.igb.uci.edu/servers/servers.html获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验