Qian Hong
Department of Applied Mathematics, University of Washington, Seattle, Washington 98195, USA.
J Phys Chem B. 2005 Dec 15;109(49):23624-8. doi: 10.1021/jp0545391.
Applying the method from recently developed fluctuation theorems to the stochastic dynamics of single macromolecules in ambient fluid at constant temperature, we establish two Jarzynski-type equalities: (1) between the log-mean-exponential (LME) of the irreversible heat dissiption of a driven molecule in nonequilibrium steady-state (NESS) and ln P(ness)(x) and (2) between the LME of the work done by the internal force of the molecule and nonequilibrium chemical potential function mu(ness)(x) identical with U(x) + k(B)T ln P(ness)(x), where P(ness)(x) is the NESS probability density in the phase space of the macromolecule and U(x) is its internal potential function. Psi = integral mu(ness)(x) P(ness)(x) dx is shown to be a nonequilibrium generalization of the Helmholtz free energy and DeltaPsi = DeltaU - TDeltaS for nonequilibrium processes, where S = - kB integralP(x) ln P(x) dx is the Gibbs entropy associated with P(x). LME of heat dissipation generalizes the concept of entropy, and the equalities define thermodynamic potential functions for open systems far from equilibrium.
将最近发展的涨落定理方法应用于恒温环境流体中单个大分子的随机动力学,我们建立了两个雅津斯基型等式:(1)非平衡稳态(NESS)下受驱分子不可逆热耗散的对数平均指数(LME)与ln P(ness)(x)之间的等式;(2)分子内力所做功的LME与非平衡化学势函数mu(ness)(x)之间的等式,mu(ness)(x)与U(x) + k(B)T ln P(ness)(x)相同,其中P(ness)(x)是大分子相空间中的NESS概率密度,U(x)是其内部势函数。Psi = integral mu(ness)(x) P(ness)(x) dx被证明是亥姆霍兹自由能的非平衡推广,对于非平衡过程有DeltaPsi = DeltaU - TDeltaS,其中S = - kB integralP(x) ln P(x) dx是与P(x)相关的吉布斯熵。热耗散的LME推广了熵的概念,这些等式定义了远离平衡的开放系统的热力学势函数。