Campisi Patrizio, Colonnese Stefania, Panci Gianpiero, Scarano Gaetano
Dipartimento Elettronica Applicata, Università degli Studi Roma Tre, via Della Vasca Navale 84, 100146 Roma, Italy.
IEEE Trans Pattern Anal Mach Intell. 2006 Jan;28(1):145-9. doi: 10.1109/TPAMI.2006.24.
In this paper, we present a texture classification procedure that makes use of a blind deconvolution approach. Specifically, the texture is modeled as the output of a linear system driven by a binary excitation. We show that features computed from one-dimensional slices extracted from the two-dimensional autocorrelation function (ACF) of the binary excitation allows representing the texture for rotation-invariant classification purposes. The two-dimensional classification problem is thus reconduced to a more simple one-dimensional one, which leads to a significant reduction of the classification procedure computational complexity.
在本文中,我们提出了一种利用盲反卷积方法的纹理分类程序。具体而言,纹理被建模为由二元激励驱动的线性系统的输出。我们表明,从二元激励的二维自相关函数(ACF)中提取的一维切片计算得到的特征,能够用于旋转不变分类目的来表示纹理。因此,二维分类问题被简化为一个更简单的一维问题,这导致分类程序的计算复杂度显著降低。