Lepage Thomas, Lawi Stephan, Tupper Paul, Bryant David
Department of Mathematics and Statistics, McGill University, Montréal, Canada.
Math Biosci. 2006 Feb;199(2):216-33. doi: 10.1016/j.mbs.2005.11.002. Epub 2006 Jan 10.
We propose a continuous model for variation in the evolutionary rate across sites and over the phylogenetic tree. We derive exact transition probabilities of substitutions under this model. Changes in rate are modelled using the CIR process, a diffusion widely used in financial applications. The model directly extends the standard gamma distributed rates across site model, with one additional parameter governing changes in rate down the tree. The parameters of the model can be estimated directly from two well-known statistics: the index of dispersion and the gamma shape parameter of the rates across sites model. The CIR model can be readily incorporated into probabilistic models for sequence evolution. We provide here an exact formula for the likelihood of a three-taxon tree. The likelihoods of larger trees can be evaluated using Monte-Carlo methods.
我们提出了一个关于跨位点和系统发育树进化速率变化的连续模型。在此模型下,我们推导了替换的精确转移概率。速率变化采用CIR过程建模,这是一种在金融应用中广泛使用的扩散模型。该模型直接扩展了标准的跨位点伽马分布速率模型,增加了一个控制沿树的速率变化的参数。模型参数可直接从两个著名统计量估计:离散指数和跨位点模型的伽马形状参数。CIR模型可以很容易地纳入序列进化的概率模型中。我们在此给出了三分类群树似然性的精确公式。更大树的似然性可使用蒙特卡罗方法进行评估。