Parekattil Sijo J, Kumar Udaya, Hegarty Nicholas J, Williams Clay, Allen Tara, Teloken Patrick, Leitão Victor A, Netto Nelson R, Haber Georges-Pascal, Ballereau Charles, Villers Arnauld, Streem Stevan B, White Mark D, Moran Michael E
Cleveland Clinic Foundation, Cleveland, Ohio, USA.
J Urol. 2006 Feb;175(2):575-9. doi: 10.1016/S0022-5347(05)00244-2.
We externally validated a previously designed neural network model to predict outcome and duration of passage for ureteral/renal calculi. The model was also evaluated using a 6 mm largest stone dimension cutoff in predicting stone outcome.
The model was previously designed on 301 patients at Albany Medical Center (free shareware from www.uroengineering.com). The model had a prediction accuracy of 86% for passage outcome and 87% for passage duration. In this study we tested the model on a separate 384 patients from 6 different external institutions to assess the prediction accuracy. All patients had a single renal/ureteral calculus by evaluation in an emergency room setting or by primary physicians and were then referred for further treatment. Model accuracy was also compared to using a 6 mm largest stone dimension cutoff in predicting the need for intervention.
Testing on the 384 patients from all 6 external institutions revealed an outcome prediction accuracy of 88%. The area under the ROC curve was 0.9. Using a 6 mm stone size cutoff provided 79% (ROC 0.8) accuracy. The model duration of passage prediction accuracy was 80% (133 patients passed the stone, area under ROC of 0.8).
The model provided high stone outcome prediction accuracy (ROC of 0.9 and 0.8) at the 6 external institutions, comparable to that of the design institution. The model provided higher accuracy than using only the largest stone dimension as a cutoff. Increasing experience will further assess the model's accuracy.
我们对先前设计的神经网络模型进行了外部验证,以预测输尿管/肾结石的排出结果和排出持续时间。还使用6毫米的最大结石尺寸临界值评估了该模型在预测结石排出结果方面的性能。
该模型先前基于奥尔巴尼医疗中心的301例患者设计(免费软件可从www.uroengineering.com获取)。该模型对结石排出结果的预测准确率为86%,对排出持续时间的预测准确率为87%。在本研究中,我们在来自6个不同外部机构的另外384例患者身上测试了该模型,以评估其预测准确率。所有患者均通过急诊室评估或由初级医生诊断为单一肾/输尿管结石,随后被转诊接受进一步治疗。还将模型的准确率与使用6毫米最大结石尺寸临界值预测干预需求的准确率进行了比较。
对来自所有6个外部机构的384例患者进行测试,结果显示结果预测准确率为88%。ROC曲线下面积为0.9。使用6毫米结石尺寸临界值的准确率为79%(ROC为0.8)。该模型对排出持续时间的预测准确率为80%(133例患者结石排出,ROC曲线下面积为0.8)。
该模型在6个外部机构中对结石排出结果的预测准确率较高(ROC分别为0.9和0.8),与设计机构的准确率相当。该模型比仅使用最大结石尺寸作为临界值具有更高的准确率。随着经验的增加,将进一步评估该模型的准确率。