Suppr超能文献

预测自然视觉过程中的神经元反应。

Predicting neuronal responses during natural vision.

作者信息

David Stephen V, Gallant Jack L

机构信息

Group in Bioengineering, University of California, Berkeley 94720-1650, USA.

出版信息

Network. 2005 Jun-Sep;16(2-3):239-60. doi: 10.1080/09548980500464030.

Abstract

A model that fully describes the response properties of visual neurons must be able to predict their activity during natural vision. While many models have been proposed for the visual system, few have ever been tested against this criterion. To address this issue, we have developed a general framework for fitting and validating nonlinear models of visual neurons using natural visual stimuli. Our approach derives from linear spatiotemporal receptive field (STRF) analysis, which has frequently been used to study the visual system. However, prior to the linear filtering stage typical of STRFs, a linearizing transformation is applied to the stimulus to account for nonlinear response properties. We used this approach to compare two models for neurons in primary visual cortex: a nonlinear Fourier power model, which accounts for spatial phase invariant tuning, and a traditional linear model. We characterized prediction accuracy in terms of the total explainable variance, given intrinsic experimental noise. On average, Fourier power STRFs predicted 40% of explainable variance while linear STRFs were able to predict only 21% of explainable variance. The performance of the Fourier power model provides a benchmark for evaluating more sophisticated models in the future.

摘要

一个能完整描述视觉神经元反应特性的模型必须能够预测其在自然视觉过程中的活动。虽然已经提出了许多针对视觉系统的模型,但很少有模型依据这一标准进行过测试。为了解决这个问题,我们开发了一个通用框架,用于使用自然视觉刺激来拟合和验证视觉神经元的非线性模型。我们的方法源自线性时空感受野(STRF)分析,这种分析经常被用于研究视觉系统。然而,在STRF典型的线性滤波阶段之前,会对刺激应用一个线性化变换,以考虑非线性反应特性。我们使用这种方法比较了初级视觉皮层中神经元的两种模型:一种是非线性傅里叶功率模型,它考虑了空间相位不变调谐;另一种是传统的线性模型。我们根据给定的内在实验噪声,以总可解释方差来表征预测准确性。平均而言,傅里叶功率STRF预测了40%的可解释方差,而线性STRF仅能预测21%的可解释方差。傅里叶功率模型的性能为未来评估更复杂的模型提供了一个基准。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验