Birch Daniel A, Young William R
Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093-0213, USA.
Theor Popul Biol. 2006 Aug;70(1):26-42. doi: 10.1016/j.tpb.2005.11.007. Epub 2006 Jan 25.
We derive a closed master equation for an individual-based population model in continuous space and time. The model and master equation include Brownian motion, reproduction via binary fission, and an interaction-dependent death rate moderated by a competition kernel. Using simulations we compare this individual-based model with the simplest approximation, the spatial logistic equation. In the limit of strong diffusion the spatial logistic equation is a good approximation to the model. However, in the limit of weak diffusion the spatial logistic equation is inaccurate because of spontaneous clustering driven by reproduction. The weak-diffusion limit can be partially analyzed using an exact solution of the master equation applicable to a competition kernel with infinite range. This analysis shows that in the case of a top-hat kernel, reducing the diffusion can increase the total population. For a Gaussian kernel, reduced diffusion invariably reduces the total population. These theoretical results are confirmed by simulation.
我们推导了一个基于个体的连续空间和时间种群模型的封闭主方程。该模型和主方程包括布朗运动、通过二分裂进行的繁殖,以及由竞争核调节的相互作用依赖死亡率。通过模拟,我们将这个基于个体的模型与最简单的近似模型——空间逻辑方程进行了比较。在强扩散极限下,空间逻辑方程是该模型的良好近似。然而,在弱扩散极限下,由于繁殖驱动的自发聚集,空间逻辑方程是不准确的。弱扩散极限可以使用适用于无限范围竞争核的主方程精确解进行部分分析。该分析表明,在平顶核的情况下,降低扩散可以增加总人口。对于高斯核,扩散的降低总是会减少总人口。这些理论结果通过模拟得到了证实。