Suppr超能文献

酪氨酸B10的氢键构象决定了高铁血红素蛋白中铁酰基物种的反应活性。

Hydrogen-bonding conformations of tyrosine B10 tailor the hemeprotein reactivity of ferryl species.

作者信息

De Jesús-Bonilla Walleska, Cruz Anthony, Lewis Ariel, Cerda José, Bacelo Daniel E, Cadilla Carmen L, López-Garriga Juan

机构信息

University of Puerto Rico, Mayagüez Campus, P.O. Box 9019, 00680-9019, Mayagüez, Puerto Rico.

出版信息

J Biol Inorg Chem. 2006 Apr;11(3):334-42. doi: 10.1007/s00775-006-0082-0. Epub 2006 Feb 9.

Abstract

Ferryl compounds [Fe(IV)=O] in living organisms play an essential role in the radical catalytic cycle and degradation processes of hemeproteins. We studied the reactions between H2O2 and hemoglobin II (HbII) (GlnE7, TyrB10, PheCD1, PheE11), recombinant hemoglobin I (HbI) (GlnE7, PheB10, PheCD1, PheE11), and the HbI PheB10Tyr mutant of L. pectinata. We found that the tyrosine residue in the B10 position tailors, in two very distinct ways, the reactivity of the ferryl species, compounds I and II. First, increasing the reaction pH from 4.86 to 7.50, and then to 11.2, caused the the second-order rate constant for HbII to decrease from 141.60 to 77.78 M-1 s-1, and to 2.96 M-1 s-1, respectively. This pH dependence is associated with the disruption of the heme-tyrosine (603 nm) protein moiety, which controls the access of the H2O2 to the hemeprotein active center, thus regulating the formation of the ferryl species. Second, the presence of compound I was evident in the UV-vis spectra (648-nm band) in the reactions of HbI and recombinant HbI with H2O2, This band, however, is completely absent in the analogous reaction with HbII and the HbI PheB10Tyr mutant. Therefore, the existence of a hydrogen-bonding network between the heme pocket amino acids (i.e., TyrB10) and the ferryl compound I created a path much faster than 3.0x10(-2) s-1 for the decay of compound I to compound II. Furthermore, the decay of the heme ferryl compound I to compound II was independent of the proximal HisF8 trans-ligand strength. Thus, the pH dependence of the heme-tyrosine moiety complex determined the overall reaction rate of the oxidative reaction limiting the interaction with H2O2 at neutral pH. The hydrogen-bonding strength between the TyrB10 and the heme ferryl species suggests the presence of a cycle where the ferryl consumption by the ferric heme increases significantly the pseudoperoxidase activity of these hemeproteins.

摘要

生物体内的高铁化合物[Fe(IV)=O]在血红素蛋白的自由基催化循环和降解过程中起着至关重要的作用。我们研究了过氧化氢与血红蛋白II(HbII)(GlnE7、TyrB10、PheCD1、PheE11)、重组血红蛋白I(HbI)(GlnE7、PheB10、PheCD1、PheE11)以及果胶杆菌的HbI PheB10Tyr突变体之间的反应。我们发现,B10位置的酪氨酸残基以两种非常不同的方式调节高铁物种(化合物I和化合物II)的反应活性。首先,将反应pH从4.86提高到7.50,然后再提高到11.2,导致HbII的二级速率常数分别从141.60 M-1 s-1降至77.78 M-1 s-1,再降至2.96 M-1 s-1。这种pH依赖性与血红素-酪氨酸(603 nm)蛋白部分的破坏有关,该部分控制着过氧化氢进入血红素蛋白活性中心的通道,从而调节高铁物种的形成。其次,在HbI和重组HbI与过氧化氢的反应中,紫外可见光谱(648 nm波段)中明显存在化合物I的谱带。然而,在与HbII和HbI PheB10Tyr突变体的类似反应中,该谱带完全不存在。因此,血红素口袋氨基酸(即TyrB10)与高铁化合物I之间存在的氢键网络为化合物I衰变为化合物II创造了一条比3.0×10(-2) s-1快得多的途径。此外,血红素高铁化合物I向化合物II的衰变与近端HisF8反式配体强度无关。因此,血红素-酪氨酸部分配合物的pH依赖性决定了氧化反应的总体反应速率,在中性pH下限制了与过氧化氢的相互作用。TyrB10与血红素高铁物种之间的氢键强度表明存在一个循环,其中高铁血红素对高铁的消耗显著增加了这些血红素蛋白的假过氧化物酶活性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验