Colonius Hans, Diederich Adele
Department of Psychology, Oldenburg University, Oldenburg, Germany.
Psychol Rev. 2006 Jan;113(1):148-54. doi: 10.1037/0033-295X.113.1.148.
An inequality by J. O. Miller (1982) has become the standard tool to test the race model for redundant signals reaction times (RTs), as an alternative to a neural summation mechanism. It stipulates that the RT distribution function to redundant stimuli is never larger than the sum of the distribution functions for 2 single stimuli. When many different experimental conditions are to be compared, a numerical index of violation is very desirable. Widespread practice is to take a certain area with contours defined by the distribution functions for single and redundant stimuli. Here this area is shown to equal the difference between 2 mean RT values. This result provides an intuitive interpretation of the index and makes it amenable to simple statistical testing. An extension of this approach to 3 redundant signals is presented.
J. O. 米勒(1982年)提出的一个不等式已成为检验冗余信号反应时间(RT)的竞争模型的标准工具,作为神经总和机制的替代方法。它规定,冗余刺激的RT分布函数永远不会大于两个单一刺激的分布函数之和。当要比较许多不同的实验条件时,非常需要一个违反的数值指标。普遍的做法是取一个由单一和冗余刺激的分布函数定义轮廓的特定区域。在此表明,该区域等于两个平均RT值之间的差异。这一结果为该指标提供了直观的解释,并使其便于进行简单的统计检验。本文还介绍了将该方法扩展到三个冗余信号的情况。