Suppr超能文献

基于实例的多类DNA微阵列数据概念学习

Instance-based concept learning from multiclass DNA microarray data.

作者信息

Berrar Daniel, Bradbury Ian, Dubitzky Werner

机构信息

School of Biomedical Sciences, University of Ulster at Coleraine, Cromore Road, Northern Ireland, UK.

出版信息

BMC Bioinformatics. 2006 Feb 16;7:73. doi: 10.1186/1471-2105-7-73.

Abstract

BACKGROUND

Various statistical and machine learning methods have been successfully applied to the classification of DNA microarray data. Simple instance-based classifiers such as nearest neighbor (NN) approaches perform remarkably well in comparison to more complex models, and are currently experiencing a renaissance in the analysis of data sets from biology and biotechnology. While binary classification of microarray data has been extensively investigated, studies involving multiclass data are rare. The question remains open whether there exists a significant difference in performance between NN approaches and more complex multiclass methods. Comparative studies in this field commonly assess different models based on their classification accuracy only; however, this approach lacks the rigor needed to draw reliable conclusions and is inadequate for testing the null hypothesis of equal performance. Comparing novel classification models to existing approaches requires focusing on the significance of differences in performance.

RESULTS

We investigated the performance of instance-based classifiers, including a NN classifier able to assign a degree of class membership to each sample. This model alleviates a major problem of conventional instance-based learners, namely the lack of confidence values for predictions. The model translates the distances to the nearest neighbors into 'confidence scores'; the higher the confidence score, the closer is the considered instance to a pre-defined class. We applied the models to three real gene expression data sets and compared them with state-of-the-art methods for classifying microarray data of multiple classes, assessing performance using a statistical significance test that took into account the data resampling strategy. Simple NN classifiers performed as well as, or significantly better than, their more intricate competitors.

CONCLUSION

Given its highly intuitive underlying principles--simplicity, ease-of-use, and robustness--the k-NN classifier complemented by a suitable distance-weighting regime constitutes an excellent alternative to more complex models for multiclass microarray data sets. Instance-based classifiers using weighted distances are not limited to microarray data sets, but are likely to perform competitively in classifications of high-dimensional biological data sets such as those generated by high-throughput mass spectrometry.

摘要

背景

各种统计和机器学习方法已成功应用于DNA微阵列数据的分类。与更复杂的模型相比,简单的基于实例的分类器,如最近邻(NN)方法,表现非常出色,目前在生物学和生物技术数据集的分析中正在经历复兴。虽然微阵列数据的二元分类已得到广泛研究,但涉及多类数据的研究却很少。NN方法与更复杂的多类方法在性能上是否存在显著差异这一问题仍然悬而未决。该领域的比较研究通常仅基于分类准确率来评估不同模型;然而,这种方法缺乏得出可靠结论所需的严谨性,并且不足以检验性能相等的零假设。将新的分类模型与现有方法进行比较需要关注性能差异的显著性。

结果

我们研究了基于实例的分类器的性能,包括一个能够为每个样本分配类隶属度的NN分类器。该模型缓解了传统基于实例的学习器的一个主要问题,即预测缺乏置信度值。该模型将到最近邻的距离转换为“置信度分数”;置信度分数越高,所考虑的实例就越接近预定义的类。我们将这些模型应用于三个真实的基因表达数据集,并将它们与用于多类微阵列数据分类的最先进方法进行比较,使用考虑数据重采样策略的统计显著性检验来评估性能。简单的NN分类器表现与更复杂的竞争对手相当,或显著优于它们。

结论

鉴于其高度直观的基本原理——简单、易用和稳健——由合适的距离加权机制补充的k-NN分类器是多类微阵列数据集更复杂模型的优秀替代方案。使用加权距离的基于实例的分类器不仅限于微阵列数据集,而且在高维生物数据集(如高通量质谱产生的数据集)的分类中可能具有竞争力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1cd4/1402330/bfd8459d7a8e/1471-2105-7-73-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验