Suppr超能文献

非等温布朗运动:热泳现象作为热偏置分子运动的宏观表现。

Nonisothermal Brownian motion: Thermophoresis as the macroscopic manifestation of thermally biased molecular motion.

作者信息

Brenner Howard

机构信息

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Dec;72(6 Pt 1):061201. doi: 10.1103/PhysRevE.72.061201. Epub 2005 Dec 5.

Abstract

A quiescent single-component gravity-free gas subject to a small steady uniform temperature gradient T, despite being at rest, is shown to experience a drift velocity UD=-D* gradient ln T, where D* is the gas's nonisothermal self-diffusion coefficient. D* is identified as being the gas's thermometric diffusivity alpha. The latter differs from the gas's isothermal isotopic self-diffusion coefficient D, albeit only slightly. Two independent derivations are given of this drift velocity formula, one kinematical and the other dynamical, both derivations being strictly macroscopic in nature. Within modest experimental and theoretical uncertainties, this virtual drift velocity UD=-alpha gradient ln T is shown to be constitutively and phenomenologically indistinguishable from the well-known experimental and theoretical formulas for the thermophoretic velocity U of a macroscopic (i.e., non-Brownian) non-heat-conducting particle moving under the influence of a uniform temperature gradient through an otherwise quiescent single-component rarefied gas continuum at small Knudsen numbers. Coupled with the size independence of the particle's thermophoretic velocity, the empirically observed equality, U=UD, leads naturally to the hypothesis that these two velocities, the former real and the latter virtual, are, in fact, simply manifestations of the same underlying molecular phenomenon, namely the gas's Brownian movement, albeit biased by the temperature gradient. This purely hydrodynamic continuum-mechanical equality is confirmed by theoretical calculations effected at the kinetic-molecular level on the basis of an existing solution of the Boltzmann equation for a quasi-Lorentzian gas, modulo small uncertainties pertaining to the choice of collision model. Explicitly, this asymptotically valid molecular model allows the virtual drift velocity UD of the light gas and the thermophoretic velocity U of the massive, effectively non-Brownian, particle, now regarded as the tracer particle of the light gas's drift velocity, to each be identified with the Chapman-Enskog "thermal diffusion velocity" of the quasi-Lorentzian gas, here designated by the symbol UM/M, as calculated by de la Mora and Mercer. It is further pointed out that, modulo the collective uncertainties cited above, the common velocities UD,U, and UM/M are identical to the single-component gas's diffuse volume current jv, the latter representing yet another, independent, strictly continuum-mechanical concept. Finally, comments are offered on the extension of the single-component drift velocity notion to liquids, and its application towards rationalizing Soret thermal-diffusion separation phenomena in quasi-Lorentzian liquid-phase binary mixtures composed of disparately sized solute and solvent molecules, with the massive Brownian solute molecules (e.g., colloidal particles) present in disproportionately small amounts relative to that of the solvent.

摘要

一种处于静止状态的单组分无重力气体,在存在小的稳定均匀温度梯度(T)的情况下,尽管处于静止状态,但仍会出现漂移速度(U_D = -D^\nabla\ln T),其中(D^)是气体的非等温自扩散系数。(D^*)被认定为气体的热扩散率(\alpha)。后者与气体的等温同位素自扩散系数(D)有所不同,尽管差异很小。给出了这个漂移速度公式的两种独立推导,一种是运动学推导,另一种是动力学推导,两种推导本质上都是严格宏观的。在适度的实验和理论不确定性范围内,这种虚拟漂移速度(U_D = -\alpha\nabla\ln T)在本构和现象学上与宏观(即非布朗)非导热粒子在均匀温度梯度影响下通过静止的单组分稀薄气体连续介质在小克努森数下的热泳速度(U)的著名实验和理论公式难以区分。再加上粒子热泳速度与尺寸无关,经验观察到的等式(U = U_D)自然地引出了这样一个假设,即这两个速度,前者是实际速度,后者是虚拟速度,实际上只是同一潜在分子现象的简单表现,即气体的布朗运动,尽管受到温度梯度的影响。这种纯粹的流体动力学连续介质力学等式通过基于准洛伦兹气体的玻尔兹曼方程的现有解在动力学分子层面进行的理论计算得到了证实,但存在与碰撞模型选择相关的小不确定性。具体来说,这个渐近有效的分子模型允许轻气体的虚拟漂移速度(U_D)和大质量的、有效非布朗的粒子(现在被视为轻气体漂移速度的示踪粒子)的热泳速度(U),分别与由德拉莫拉和默瑟计算的准洛伦兹气体的查普曼 - 恩斯科格“热扩散速度”(U_{M/M})相等。还进一步指出,在上述集体不确定性范围内,共同速度(U_D)、(U)和(U_{M/M})与单组分气体的扩散体积流(j_v)相同,后者代表另一个独立的、严格的连续介质力学概念。最后,对单组分漂移速度概念向液体的扩展以及其在合理化由尺寸差异很大的溶质和溶剂分子组成的准洛伦兹液相二元混合物中的索雷特热扩散分离现象方面的应用进行了评论,其中大质量的布朗溶质分子(例如胶体粒子)相对于溶剂的含量极少。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验