Malli Gulzari L
Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada.
J Chem Phys. 2006 Feb 21;124(7):71102. doi: 10.1063/1.2173233.
Our ab initio all-electron fully relativistic Dirac-Fock (DF) and nonrelativistic (NR) Hartree-Fock (HF) self-consistent field (SCF) calculations predict the superheavy diatomic ekaplutonium fluoride E126F to be bound with the calculated dissociation energy of 7.44 and 10.46 eV at the predicted E126-F bond lengths of 2.03 and 2.18 Angstroms, respectively. The antibinding effects of relativity to the dissociation energy of E126F are approximately 3 eV. The predicted dissociation energy with both our NR HF and relativistic DF SCF wave functions is fairly large and is comparable to that for very stable diatomics. This is the first case, where in a diatomic, an atom has g orbital (l = 4) occupied in its ground state electronic configuration and such superheavy diatomics would have occupied molecular spinors (orbitals) consisting of g atomic spinors (orbitals). This opens up a whole new field of chemistry where g atomic spinors (orbitals) may be involved in electronic structure and chemical bonding of systems of superheavy elements with Z> or =122.
我们的从头算全电子完全相对论性狄拉克 - 福克(DF)和非相对论性(NR)哈特里 - 福克(HF)自洽场(SCF)计算预测,超重双原子锿氟化物E126F是束缚态,在预测的E126 - F键长分别为2.03和2.18埃时,计算得到的解离能为7.44和10.46电子伏特。相对论对E126F解离能的反键效应约为3电子伏特。我们用NR HF和相对论性DF SCF波函数预测的解离能相当大,与非常稳定的双原子分子的解离能相当。这是第一例双原子分子中,一个原子在其基态电子构型中有g轨道(l = 4)被占据,并且这种超重双原子分子将具有由g原子自旋轨道组成的占据分子自旋轨道。这开辟了一个全新的化学领域,其中g原子自旋轨道可能参与Z≥122的超重元素体系的电子结构和化学键合。