Lambert Amaury
Unit of Mathematical Evolutionary Biology, UMR 7625 Laboratoire d'Ecologie, Ecole Normale Supérieure, Paris, France.
Theor Popul Biol. 2006 Jun;69(4):419-41. doi: 10.1016/j.tpb.2006.01.002. Epub 2006 Feb 28.
We link two-allele population models by Haldane and Fisher with Kimura's diffusion approximations of the Wright-Fisher model, by considering continuous-state branching (CB) processes which are either independent (model I) or conditioned to have constant sum (model II). Recent works by the author allow us to further include logistic density-dependence (model III), which is ubiquitous in ecology. In all models, each allele (mutant or resident) is then characterized by a triple demographic trait: intrinsic growth rate r, reproduction variance sigma and competition sensitivity c. Generally, the fixation probability u of the mutant depends on its initial proportion p, the total initial population size z, and the six demographic traits. Under weak selection, we can linearize u in all models thanks to the same master formula u = p + p(1 - p)[g(r)s(r) + g(sigma)s(sigma) + g(c)s(c)] + o(s(r),s(sigma),s(c), where s(r) = r' - r, s(sigma) = sigma-sigma' and s(c) = c - c' are selection coefficients, and g(r), g(sigma), g(c) are invasibility coefficients (' refers to the mutant traits), which are positive and do not depend on p. In particular, increased reproduction variance is always deleterious. We prove that in all three models g(sigma) = 1/sigma and g(r) = z/sigma for small initial population sizes z. In model II, g(r) = z/sigma for all z, and we display invasion isoclines of the 'mean vs variance' type. A slight departure from the isocline is shown to be more beneficial to alleles with low sigma than with high r. In model III, g(c) increases with z like ln(z)/c, and g(r)(z) converges to a finite limit L > K/sigma, where K = r/c is the carrying capacity. For r > 0 the growth invasibility is above z/sigma when z < K, and below z/sigma when z > K, showing that classical models I and II underestimate the fixation probabilities in growing populations, and overestimate them in declining populations.
我们通过考虑连续状态分支(CB)过程,将霍尔丹(Haldane)和费希尔(Fisher)的双等位基因群体模型与木村(Kimura)对赖特 - 费希尔(Wright-Fisher)模型的扩散近似联系起来,这些连续状态分支过程要么是独立的(模型I),要么是条件为具有恒定总和的(模型II)。作者最近的工作使我们能够进一步纳入逻辑斯谛密度依赖(模型III),这在生态学中普遍存在。在所有模型中,每个等位基因(突变体或野生型)随后由三个人口统计学特征来表征:内在增长率r、繁殖方差σ和竞争敏感度c。一般来说,突变体的固定概率u取决于其初始比例p、初始种群总数z以及这六个人口统计学特征。在弱选择下,由于相同的主公式u = p + p(1 - p)[g(r)s(r) + g(σ)s(σ) + g(c)s(c)] + o(s(r),s(σ),s(c)),我们可以在所有模型中对u进行线性化,其中s(r) = r' - r,s(σ) = σ - σ' 且s(c) = c - c' 是选择系数,g(r)、g(σ)、g(c)是入侵系数(' 表示突变体特征),它们为正且不依赖于p。特别地,繁殖方差的增加总是有害的。我们证明,对于小的初始种群规模z,在所有三个模型中g(σ) = 1/σ 且g(r) = z/σ。在模型II中,对于所有z,g(r) = z/σ,并且我们展示了“均值与方差”类型的入侵等斜线。结果表明,与高r的等位基因相比,稍微偏离等斜线对低σ的等位基因更有利。在模型III中,g(c) 随z像ln(z)/c一样增加,并且g(r)(z) 收敛到一个有限极限L > K/σ,其中K = r/c是承载能力。对于r > 0,当z < K时,增长入侵性高于z/σ,而当z > K时,低于z/σ,这表明经典模型I和II在增长种群中低估了固定概率,而在衰退种群中高估了它们。