Suppr超能文献

有机层状双氢氧化物中的水合作用、膨胀、层间结构和氢键:柠檬酸盐插层水滑石分子动力学模拟的见解

Hydration, swelling, interlayer structure, and hydrogen bonding in organolayered double hydroxides: insights from molecular dynamics simulation of citrate-intercalated hydrotalcite.

作者信息

Padma Kumar P, Kalinichev Andrey G, Kirkpatrick R James

机构信息

Department of Geology, University of Illinois at Urbana-Champaign, 245 Natural History Bldg., 1301 W. Green Street, Urbana, Illinois 61801, USA.

出版信息

J Phys Chem B. 2006 Mar 9;110(9):3841-4. doi: 10.1021/jp057069j.

Abstract

Molecular dynamics (MD) simulation of the Mg/Al (3:1) layered double hydroxide (LDH), hydrotalcite (HT), containing citrate, C6H5O7(3-), as the charge balancing interlayer anion provides new molecular scale insight into the interlayer structure, hydrogen bonding, and energetics of the hydration and consequent swelling of LDH compounds containing organic and biomolecules. Citrate-HT exhibits affinity for water up to very high hydration levels, in contrast to the preferred low hydration states of most LDHs intercalated with small, inorganic anions. This result is consistent with the recent experimental observation of the delamination of lactate-HT. The high water affinity is rationalized in terms of the preference of citrate ion for hydrogen bonds (H-bonds) donated from water molecules rather than from the hydroxyl groups of the metal hydroxide layer and the need to develop an integrated interlayer H-bond network among the citrate ions, water, and -OH groups of the hydroxide layers. The changes in the orientation of citrate molecules with progressive hydration are also intimately related to its preference to accept hydrogen bonds from water.

摘要

对含有柠檬酸根离子(C6H5O7(3-))作为电荷平衡层间阴离子的镁铝(3:1)层状双氢氧化物(LDH)即水滑石(HT)进行分子动力学(MD)模拟,为含有有机和生物分子的LDH化合物的层间结构、氢键以及水合作用和随之而来的膨胀的能量学提供了新的分子尺度见解。与大多数插层有小的无机阴离子的LDH倾向于低水合状态不同,柠檬酸根-水滑石对水具有很高的亲和性,直至达到非常高的水合水平。这一结果与最近关于乳酸根-水滑石分层的实验观察结果一致。高水亲和性可以从柠檬酸根离子优先与水分子而非金属氢氧化物层的羟基形成氢键(H键)以及在柠檬酸根离子、水和氢氧化物层的-OH基团之间形成完整的层间氢键网络的需求方面进行解释。随着水合作用的进行,柠檬酸分子取向的变化也与其优先接受来自水的氢键密切相关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验