Pakoulev Andrei V, Rickard Mark A, Meyer Kent A, Kornau Kathryn, Mathew Nathan A, Thompson David E, Wright John C
J Phys Chem A. 2006 Mar 16;110(10):3352-5. doi: 10.1021/jp057339y.
Ultrafast spectroscopy is dominated by time domain methods such as pump-probe and, more recently, 2D-IR spectroscopies. In this paper, we demonstrate that a mixed frequency/time domain ultrafast four wave mixing (FWM) approach not only provides similar capabilities, but it also provides optical analogues of multiple- and zero-quantum heteronuclear nuclear magnetic resonance (NMR). The method requires phase coherence between the excitation pulses only over the dephasing time of the coherences. It uses twelve coherence pathways that include four with populations, four with zero-quantum coherences, and four with double-quantum coherences. Each pathway provides different capabilities. The population pathways correspond to those of two-dimensional (2D) time domain spectroscopies, while the double- and zero-quantum coherence pathways access the coherent dynamics of coupled quantum states. The three spectral and two temporal dimensions enable the isolation and characterization of the spectral correlations between different vibrational and/or electronic states, coherence and population relaxation rates, and coupling strengths. Quantum-level interference between the direct and free-induction decay components gives a spectral resolution that exceeds that of the excitation pulses. Appropriate parameter choices allow isolation of individual coherence pathways. The mixed frequency/time domain approach allows one to access any set of quantum states with coherent multidimensional spectroscopy.
超快光谱学主要采用时域方法,如泵浦 - 探测技术,以及最近出现的二维红外光谱学。在本文中,我们证明了一种混合频率/时域的超快四波混频(FWM)方法不仅具备类似的能力,还能提供多量子和零量子异核核磁共振(NMR)的光学类似物。该方法仅要求激发脉冲之间在相干相消时间内保持相位相干。它使用十二条相干路径,其中包括四条涉及粒子数的路径、四条涉及零量子相干的路径以及四条涉及双量子相干的路径。每条路径都具备不同的能力。涉及粒子数的路径与二维(2D)时域光谱学中的路径相对应,而双量子和零量子相干路径则用于研究耦合量子态的相干动力学。三个光谱维度和两个时间维度能够分离并表征不同振动和/或电子态之间的光谱相关性、相干和粒子数弛豫速率以及耦合强度。直接分量和自由感应衰减分量之间的量子级干涉给出了超过激发脉冲的光谱分辨率。通过适当选择参数,可以分离出各个相干路径。这种混合频率/时域方法使得人们能够通过相干多维光谱学访问任何一组量子态。