Cerdán Sebastián, Rodrigues Tiago B, Sierra Alejandra, Benito Marina, Fonseca Luis L, Fonseca Carla P, García-Martín María L
Laboratory for Imaging and Spectroscopy by Magnetic Resonance LISMAR, Institute of Biomedical Research Alberto Sols, c/Arturo Duperier 4, E-28029 Madrid, Spain.
Neurochem Int. 2006 May-Jun;48(6-7):523-30. doi: 10.1016/j.neuint.2005.12.036. Epub 2006 Mar 10.
We provide an integrative interpretation of neuroglial metabolic coupling including the presence of subcellular compartmentation of pyruvate and monocarboxylate recycling through the plasma membrane of both neurons and glial cells. The subcellular compartmentation of pyruvate allows neurons and astrocytes to select between glucose and lactate as alternative substrates, depending on their relative extracellular concentration and the operation of a redox switch. This mechanism is based on the inhibition of glycolysis at the level of glyceraldehyde 3-phosphate dehydrogenase by NAD(+) limitation, under sufficiently reduced cytosolic NAD(+)/NADH redox conditions. Lactate and pyruvate recycling through the plasma membrane allows the return to the extracellular medium of cytosolic monocarboxylates enabling their transcellular, reversible, exchange between neurons and astrocytes. Together, intracellular pyruvate compartmentation and monocarboxylate recycling result in an effective transcellular coupling between the cytosolic NAD(+)/NADH redox states of both neurons and glial cells. Following glutamatergic neurotransmission, increased glutamate uptake by the astrocytes is proposed to augment glycolysis and tricarboxylic acid cycle activity, balancing to a reduced cytosolic NAD(+)/NADH in the glia. Reducing equivalents are transferred then to the neuron resulting in a reduced neuronal NAD(+)/NADH redox state. This may eventually switch off neuronal glycolysis, favoring the oxidation of extracellular lactate in the lactate dehydrogenase (LDH) equilibrium and in the neuronal tricarboxylic acid cycles. Finally, pyruvate derived from neuronal lactate oxidation, may return to the extracellular space and to the astrocyte, restoring the basal redox state and beginning a new loop of the lactate/pyruvate transcellular coupling cycle. Transcellular redox coupling operates through the plasma membrane transporters of monocarboxylates, similarly to the intracellular redox shuttles coupling the cytosolic and mitochondrial redox states through the transporters of the inner mitochondrial membrane. Finally, transcellular redox coupling mechanisms may couple glycolytic and oxidative zones in other heterogeneous tissues including muscle and tumors.
我们对神经胶质代谢偶联进行了综合阐释,包括丙酮酸的亚细胞区室化以及通过神经元和神经胶质细胞膜的单羧酸循环。丙酮酸的亚细胞区室化使神经元和星形胶质细胞能够根据细胞外相对浓度和氧化还原开关的运作,在葡萄糖和乳酸之间选择替代底物。该机制基于在胞质NAD⁺/NADH氧化还原条件充分降低时,NAD⁺限制对甘油醛3-磷酸脱氢酶水平糖酵解的抑制作用。通过细胞膜的乳酸和丙酮酸循环使胞质单羧酸返回细胞外介质,从而实现它们在神经元和星形胶质细胞之间的跨细胞、可逆交换。总之,细胞内丙酮酸区室化和单羧酸循环导致神经元和神经胶质细胞胞质NAD⁺/NADH氧化还原状态之间有效的跨细胞偶联。在谷氨酸能神经传递后,星形胶质细胞对谷氨酸摄取增加,这被认为会增强糖酵解和三羧酸循环活性,平衡神经胶质细胞中降低的胞质NAD⁺/NADH。还原当量随后转移到神经元,导致神经元NAD⁺/NADH氧化还原状态降低。这最终可能会关闭神经元糖酵解,有利于乳酸脱氢酶(LDH)平衡和神经元三羧酸循环中细胞外乳酸的氧化。最后,源自神经元乳酸氧化的丙酮酸可能返回细胞外空间并进入星形胶质细胞,恢复基础氧化还原状态并开始乳酸/丙酮酸跨细胞偶联循环的新循环。跨细胞氧化还原偶联通过单羧酸的细胞膜转运体起作用,类似于通过线粒体内膜转运体偶联胞质和线粒体氧化还原状态的细胞内氧化还原穿梭。最后,跨细胞氧化还原偶联机制可能会在包括肌肉和肿瘤在内的其他异质组织中偶联糖酵解和氧化区域。