Ye Dan, Zhou Wei, Lu Tong, Jagadeesh Setti G, Falck John R, Lee Hon-Chi
Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA.
Am J Physiol Heart Circ Physiol. 2006 Apr;290(4):H1326-36. doi: 10.1152/ajpheart.00318.2005.
Recently, we reported that 11,12-epoxyeicosatrienoic acid (11,12-EET) potently activates rat mesenteric arterial ATP-sensitive K(+) (K(ATP)) channels and produces significant vasodilation through protein kinase A-dependent mechanisms. In this study, we tried to further delineate the signaling steps involved in the activation of vascular K(ATP) channels by EETs. Whole cell patch-clamp recordings [0.1 mM ATP in the pipette, holding potential (HP) = 0 mV and testing potential (TP) = -100 mV] in freshly isolated rat mesenteric smooth muscle cells showed small glibenclamide-sensitive K(ATP) currents (19.0 +/- 7.9 pA, n = 5) that increased 6.9-fold on exposure to 5 microM 14,15-EET (132.0 +/- 29.0 pA, n = 7, P < 0.05 vs. control). With 1 mM ATP in the pipette solution, K(ATP) currents (HP = 0 mV and TP = -100 mV) were increased 3.5-fold on exposure to 1 microM 14,15-EET (57.5 +/- 14.3 pA, n = 9, P < 0.05 vs. baseline). In the presence of 100 nM iberiotoxin, 1 microM 14,15-EET hyperpolarized the membrane potential from -20.5 +/- 0.9 mV at baseline to -27.1 +/- 3.0 mV (n = 6 for both, P < 0.05 vs. baseline), and the EET effects were significantly reversed by 10 microM glibenclamide (-21.8 +/- 1.4 mV, n = 6, P < 0.05 vs. EET). Incubation with 5 microM 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE), a 14,15-EET antagonist, abolished the 14,15-EET effects (31.0 +/- 11.8 pA, n = 5, P < 0.05 vs. 14,15-EET, P = not significant vs. control). The 14,15-EET effects were inhibited by inclusion of anti-G(s)alpha antibody (1:500 dilution) but not by control IgG in the pipette solution. The effects of 14,15-EET were mimicked by cholera toxin (100 ng/ml), an exogenous ADP-ribosyltransferase. Treatment with the ADP-ribosyltransferase inhibitors 3-aminobenzamide (1 mM) or m-iodobenzylguanidine (100 microM) abrogated the effects of 14,15-EET on K(ATP) currents. These results were corroborated by vasodilation studies. 14,15-EET dose-dependently dilated isolated small mesenteric arteries, and this was significantly attenuated by treatment with 14,15-EEZE or 3-aminobenzamide. These results suggest that 14,15-EET activates vascular K(ATP) channels through ADP-ribosylation of G(s)alpha.
最近,我们报道了11,12-环氧二十碳三烯酸(11,12-EET)能有效激活大鼠肠系膜动脉的ATP敏感性钾(K(ATP))通道,并通过蛋白激酶A依赖机制产生显著的血管舒张作用。在本研究中,我们试图进一步阐明EETs激活血管K(ATP)通道所涉及的信号传导步骤。在新鲜分离的大鼠肠系膜平滑肌细胞中进行全细胞膜片钳记录[移液管中含0.1 mM ATP,钳制电位(HP)= 0 mV,测试电位(TP)= -100 mV],结果显示存在小的格列本脲敏感的K(ATP)电流(19.0 ± 7.9 pA,n = 5),在暴露于5 μM 14,15-EET后增加了6.9倍(132.0 ± 29.0 pA,n = 7,与对照组相比P < 0.05)。当移液管溶液中含有1 mM ATP时,暴露于1 μM 14,15-EET后K(ATP)电流(HP = 0 mV,TP = -100 mV)增加了3.5倍(57.5 ± 14.3 pA,n = 9,与基线相比P < 0.05)。在存在100 nM埃博毒素的情况下,1 μM 14,15-EET使膜电位从基线时的-20.5 ± 0.9 mV超极化至-27.1 ± 3.0 mV(两者n = 6,与基线相比P < 0.05),并且EET的作用被10 μM格列本脲显著逆转(-21.8 ± 1.4 mV,n = 6,与EET相比P < 0.05)。用5 μM 14,15-环氧二十碳-5(Z)-烯酸(14,15-EEZE)(一种14,15-EET拮抗剂)孵育可消除14,15-EET的作用(31.0 ± 11.8 pA,n = 5,与14,15-EET相比P < 0.05,与对照组相比P无显著性差异)。移液管溶液中加入抗G(s)α抗体(1:500稀释)可抑制14,15-EET的作用,但加入对照IgG则无此作用。霍乱毒素(100 ng/ml,一种外源性ADP核糖基转移酶)可模拟14,15-EET的作用。用ADP核糖基转移酶抑制剂3-氨基苯甲酰胺(1 mM)或间碘苄胍(100 μM)处理可消除14,15-EET对K(ATP)电流的作用。血管舒张研究证实了这些结果。14,15-EET能剂量依赖性地舒张分离的肠系膜小动脉,而用14,15-EEZE或3-氨基苯甲酰胺处理可显著减弱这种作用。这些结果表明,14,15-EET通过对G(s)α进行ADP核糖基化来激活血管K(ATP)通道。