Suppr超能文献

用于有序尺度上两个评分之间一致性的对数线性非均匀关联模型。

Log-linear non-uniform association models for agreement between two ratings on an ordinal scale.

作者信息

Valet Fabien, Guinot Christiane, Mary Jean Yves

机构信息

INSERM U717, Département de Biostatistique et Informatique Médicale, Hôpital Saint-Louis, Université Paris 7, Paris, France.

出版信息

Stat Med. 2007 Feb 10;26(3):647-62. doi: 10.1002/sim.2551.

Abstract

In agreement studies, when objects are rated independently by two raters (or twice by the same rater), an association between their ratings on two categories arises, reflecting the distinguishability of these two categories for these raters. When ratings are performed on an ordinal scale, this association between ratings on two categories increases when the distance between these categories increases on the ordinal scale. Goodman's log-linear models derived for the analysis of agreement between two raters on an ordinal scale assume that distinguishabilities between adjacent categories are either constant, or a priori fixed. Log-non-linear models that allow variations of the distinguishabilities between adjacent categories along the scale, may lead to difficulties in parameter estimation. This paper describes a new class of log-linear non-uniform association models. These models extend the log-linear uniform association model by allowing variations of distinguishability between adjacent categories (along the scale). These new models are used to analyse ordinal agreement between dermatologists when assessing the severity of different cutaneous signs of ageing on women faces.

摘要

在一致性研究中,当由两名评估者独立对对象进行评分(或由同一名评估者评分两次)时,他们在两个类别上的评分之间会出现一种关联,这反映了这两个类别对这些评估者的可区分性。当在有序尺度上进行评分时,两个类别评分之间的这种关联会随着这些类别在有序尺度上距离的增加而增强。古德曼为分析两名评估者在有序尺度上的一致性而推导的对数线性模型假设相邻类别之间的可区分性要么是恒定的,要么是先验固定的。允许相邻类别之间的可区分性沿尺度变化的对数非线性模型可能会导致参数估计困难。本文描述了一类新的对数线性非均匀关联模型。这些模型通过允许相邻类别之间的可区分性(沿尺度)变化,扩展了对数线性均匀关联模型。这些新模型用于分析皮肤科医生在评估女性面部不同皮肤老化迹象的严重程度时的有序一致性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验