Suppr超能文献

上皮碳酸酐酶促进大鼠十二指肠黏膜中的二氧化碳分压和pH调节。

Epithelial carbonic anhydrases facilitate PCO2 and pH regulation in rat duodenal mucosa.

作者信息

Mizumori Misa, Meyerowitz Justin, Takeuchi Tetsu, Lim Shu, Lee Paul, Supuran Claudiu T, Guth Paul H, Engel Eli, Kaunitz Jonathan D, Akiba Yasutada

机构信息

Department of Medicine, School of Medicine, University of California, Los Angeles, USA.

出版信息

J Physiol. 2006 Jun 15;573(Pt 3):827-42. doi: 10.1113/jphysiol.2006.107581. Epub 2006 Mar 23.

Abstract

The duodenum is the site of mixing of massive amounts of gastric H+ with secreted HCO3-, generating CO2 and H2O accompanied by the neutralization of H+. We examined the role of membrane-bound and soluble carbonic anhydrases (CA) by which H+ is neutralized, CO2 is absorbed, and HCO3- is secreted. Rat duodena were perfused with solutions of different pH and PCO2 with or without a cell-permeant CA inhibitor methazolamide (MTZ) or impermeant CA inhibitors. Flow-through pH and PCO2 electrodes simultaneously measured perfusate and effluent pH and PCO2. High CO2 (34.7 kPa) perfusion increased net CO2 loss from the perfusate compared with controls (pH 6.4 saline, PCO2 approximately 0) accompanied by portal venous (PV) acidification and PCO2 increase. Impermeant CA inhibitors abolished net perfusate CO2 loss and increased net HCO3- gain, whereas all CA inhibitors inhibited PV acidification and PCO2 increase. The changes in luminal and PV pH and [CO2] were also inhibited by the Na+-H+ exchanger-1 (NHE1) inhibitor dimethylamiloride, but not by the NHE3 inhibitor S3226. Luminal acid decreased total CO2 output and increased H+ loss with PV acidification and PCO2 increase, all inhibited by all CA inhibitors. During perfusion of a 30% CO2 buffer, loss of CO2 from the lumen was CA dependent as was transepithelial transport of perfused 13CO2. H+ and CO2 loss from the perfusate were accompanied by increases of PV H+ and tracer CO2, but unchanged PV total CO2, consistent with CA-dependent transmucosal H+ and CO2 movement. Inhibition of membrane-bound CAs augments the apparent rate of net basal HCO3- secretion. Luminal H+ traverses the apical membrane as CO2, is converted back to cytosolic H+, which is extruded via NHE1. Membrane-bound and cytosolic CAs cooperatively facilitate secretion of HCO3- into the lumen and CO2 diffusion into duodenal mucosa, serving as important acid-base regulators.

摘要

十二指肠是大量胃内氢离子与分泌的碳酸氢根混合的部位,会生成二氧化碳和水,并伴随着氢离子的中和。我们研究了膜结合型和可溶性碳酸酐酶(CA)的作用,通过这些酶氢离子被中和、二氧化碳被吸收以及碳酸氢根被分泌。用不同pH值和二氧化碳分压的溶液灌注大鼠十二指肠,同时使用或不使用可透过细胞的CA抑制剂甲醋唑胺(MTZ)或不可透过的CA抑制剂。流通式pH电极和二氧化碳分压电极同时测量灌注液和流出液的pH值和二氧化碳分压。与对照组(pH 6.4生理盐水,二氧化碳分压约为0)相比,高二氧化碳(34.7 kPa)灌注增加了灌注液中二氧化碳的净损失,同时伴有门静脉(PV)酸化和二氧化碳分压升高。不可透过的CA抑制剂消除了灌注液中二氧化碳的净损失,并增加了碳酸氢根的净增加量,而所有CA抑制剂均抑制PV酸化和二氧化碳分压升高。管腔和PV的pH值以及[二氧化碳]的变化也受到钠氢交换体1(NHE1)抑制剂二甲基amiloride的抑制,但不受NHE3抑制剂S3226的抑制。管腔酸化降低了总二氧化碳输出量,并增加了氢离子损失,同时伴有PV酸化和二氧化碳分压升高,所有这些都受到所有CA抑制剂的抑制。在灌注30%二氧化碳缓冲液期间,管腔中二氧化碳的损失依赖于CA,灌注的13二氧化碳的跨上皮运输也是如此。灌注液中氢离子和二氧化碳的损失伴随着PV氢离子和示踪二氧化碳的增加,但PV总二氧化碳不变,这与CA依赖的跨粘膜氢离子和二氧化碳运动一致。抑制膜结合型CA会增加基础碳酸氢根分泌的表观速率。管腔氢离子以二氧化碳的形式穿过顶端膜,再转化回胞质氢离子,通过NHE1排出。膜结合型和胞质CA协同促进碳酸氢根分泌到管腔中以及二氧化碳扩散到十二指肠粘膜中,作为重要的酸碱调节剂。

相似文献

1
Epithelial carbonic anhydrases facilitate PCO2 and pH regulation in rat duodenal mucosa.
J Physiol. 2006 Jun 15;573(Pt 3):827-42. doi: 10.1113/jphysiol.2006.107581. Epub 2006 Mar 23.
3
NHE3 inhibition activates duodenal bicarbonate secretion in the rat.
Am J Physiol Gastrointest Liver Physiol. 2004 Jan;286(1):G102-9. doi: 10.1152/ajpgi.00092.2003. Epub 2003 Jul 24.
4
Mechanism of augmented duodenal HCO(3)(-) secretion after elevation of luminal CO(2).
Am J Physiol Gastrointest Liver Physiol. 2005 Mar;288(3):G557-63. doi: 10.1152/ajpgi.00344.2004. Epub 2004 Oct 21.
5
Carbonic anhydrase inhibitors modify intracellular pH transients and contractions of rat middle cerebral arteries during CO/HCO fluctuations.
J Cereb Blood Flow Metab. 2018 Mar;38(3):492-505. doi: 10.1177/0271678X17699224. Epub 2017 Mar 20.
6
CFTR inhibition augments NHE3 activity during luminal high CO2 exposure in rat duodenal mucosa.
Am J Physiol Gastrointest Liver Physiol. 2008 Jun;294(6):G1318-27. doi: 10.1152/ajpgi.00025.2008. Epub 2008 Apr 17.
7
A physiological measure of carbonic anhydrase in Müller cells.
Glia. 1994 Aug;11(4):291-9. doi: 10.1002/glia.440110402.
9
HCO3- absorption in rabbit outer medullary collecting duct: role of luminal carbonic anhydrase.
Am J Physiol. 1998 Jan;274(1):F139-47. doi: 10.1152/ajprenal.1998.274.1.F139.
10
Influence of proton availability on intracapillary CO2-HCO3(-)-H+ reactions in isolated rat lungs.
J Appl Physiol (1985). 1992 Jun;72(6):2140-8. doi: 10.1152/jappl.1992.72.6.2140.

引用本文的文献

2
Recent Progress in Regulating the Activity of Enzymes with Photoswitchable Inhibitors.
Molecules. 2024 Sep 24;29(19):4523. doi: 10.3390/molecules29194523.
3
Carbonic Anhydrases II and IX in Non-ampullary Duodenal Adenomas and Adenocarcinoma.
J Histochem Cytochem. 2021 Nov;69(11):677-690. doi: 10.1369/00221554211050133. Epub 2021 Oct 12.
4
Duodenal chemosensory system: enterocytes, enteroendocrine cells, and tuft cells.
Curr Opin Gastroenterol. 2020 Nov;36(6):501-508. doi: 10.1097/MOG.0000000000000685.
5
Visible Light Mediated Bidirectional Control over Carbonic Anhydrase Activity in Cells and Using Azobenzenesulfonamides.
J Am Chem Soc. 2020 Aug 26;142(34):14522-14531. doi: 10.1021/jacs.0c05383. Epub 2020 Jul 16.
6
Lipopolysaccharides transport during fat absorption in rodent small intestine.
Am J Physiol Gastrointest Liver Physiol. 2020 Jun 1;318(6):G1070-G1087. doi: 10.1152/ajpgi.00079.2020. Epub 2020 May 11.
7
GLP-2 Acutely Prevents Endotoxin-Related Increased Intestinal Paracellular Permeability in Rats.
Dig Dis Sci. 2020 Sep;65(9):2605-2618. doi: 10.1007/s10620-020-06097-6. Epub 2020 Jan 31.
9
Gastric carbonic anhydrase IX deficiency: At base, it is all about acid.
Acta Physiol (Oxf). 2018 Apr;222(4):e13047. doi: 10.1111/apha.13047. Epub 2018 Feb 21.
10
FFA2 activation combined with ulcerogenic COX inhibition induces duodenal mucosal injury via the 5-HT pathway in rats.
Am J Physiol Gastrointest Liver Physiol. 2017 Aug 1;313(2):G117-G128. doi: 10.1152/ajpgi.00041.2017. Epub 2017 May 19.

本文引用的文献

1
THE ROLE OF CARBONIC ANHYDRASE IN CERTAIN IONIC EXCHANGES INVOLVING THE ERYTHROCYTE.
J Gen Physiol. 1942 Mar 20;25(4):539-52. doi: 10.1085/jgp.25.4.539.
3
THE FACTORS IN THE DEHYDRATION FOLLOWING PYLORIC OBSTRUCTION.
J Clin Invest. 1925 Jun;1(5):403-23. doi: 10.1172/JCI100021.
4
Carbonic anhydrase isozyme-II-deficient mice lack the duodenal bicarbonate secretory response to prostaglandin E2.
Proc Natl Acad Sci U S A. 2005 Oct 18;102(42):15247-52. doi: 10.1073/pnas.0508007102. Epub 2005 Oct 10.
5
A novel small molecule CFTR inhibitor attenuates HCO3- secretion and duodenal ulcer formation in rats.
Am J Physiol Gastrointest Liver Physiol. 2005 Oct;289(4):G753-9. doi: 10.1152/ajpgi.00130.2005. Epub 2005 May 19.
6
Expression of membrane-associated carbonic anhydrase isoforms IV, IX, XII, and XIV in the rabbit: induction of CA IV and IX during maturation.
Am J Physiol Regul Integr Comp Physiol. 2005 May;288(5):R1256-63. doi: 10.1152/ajpregu.00735.2004.
7
Gastroduodenal mucus bicarbonate barrier: protection against acid and pepsin.
Am J Physiol Cell Physiol. 2005 Jan;288(1):C1-19. doi: 10.1152/ajpcell.00102.2004.
8
Mechanism of augmented duodenal HCO(3)(-) secretion after elevation of luminal CO(2).
Am J Physiol Gastrointest Liver Physiol. 2005 Mar;288(3):G557-63. doi: 10.1152/ajpgi.00344.2004. Epub 2004 Oct 21.
9
Cystic fibrosis gene mutation reduces epithelial cell acidification and injury in acid-perfused mouse duodenum.
Gastroenterology. 2004 Oct;127(4):1162-73. doi: 10.1053/j.gastro.2004.06.057.
10
Expression of carbonic anhydrase IX in mouse tissues.
J Histochem Cytochem. 2004 Oct;52(10):1313-22. doi: 10.1177/002215540405201007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验